Lecture Notes on Structural Vector Autoregressions

Anders Warne

1. Outline

- Macroeconomic background
- Sims (1980)
- Stock and Watson (1988)
- Vector Autoregressions

1. Stationarity vs. nonstationarity
2. Structural models
3. Dynamic experiments
4. Estimation

- Lütkepohl (1991), chapter 2
- Hamilton (1994), chapter 11
- Sims (1980)
- Cooley and LeRoy (1985)
- Runkle (1987)
- Cointegration and Common Trends
- Johansen and Juselius (1990)
- King, Plosser, Stock, and Watson (1991)
- Mellander, Vredin, and Warne (1992)
- Englund, Vredin, and Warne (1994)
- Jacobson, Vredin, and Warne (1996)

These notes will not discuss estimation and inference in structural VAR's; the reader is instead adviced to consult the sources listed above. Rather, the main purpose is to explain terminology and concepts by focusing on a few simple examples. Some familiarity with ARIMA models is assumed.

[^0]
2. MACROECONOMIC BACKGROUND

Example: Let Y_{t} and C_{t} denote (the natural logarithms of) aggregate income and consumption, respectively. Consider the following version of the permanent income hypothesis (PIH) for $t=1,2, \ldots$:

$$
\begin{align*}
Y_{t} & =Y_{t}^{\mathrm{p}}+v_{t}, \tag{2.1}\\
Y_{t}^{\mathrm{p}} & =\mu_{Y}+Y_{t-1}^{\mathrm{p}}+u_{t}, \tag{2.2}\\
C_{t} & =Y_{t}^{\mathrm{p}}, \tag{2.3}
\end{align*}
$$

where $\left(u_{t}, v_{t}\right)$ is $\operatorname{iid}\left(0, \operatorname{Diag}\left(\sigma_{u}^{2}, \sigma_{v}^{2}\right)\right)$ and Y_{0}^{p} is fixed. Solving for permanent income, Y_{t}^{p}, in terms of Y_{0}^{p} and u_{i} we obtain

$$
\begin{equation*}
Y_{t}^{\mathrm{p}}=Y_{0}^{\mathrm{p}}+\mu_{Y} t+\sum_{i=1}^{t} u_{i} . \tag{2.4}
\end{equation*}
$$

Hence, aggregate income and consumption are given by:

$$
\begin{align*}
Y_{t} & =Y_{0}^{\mathrm{p}}+\mu_{Y} t+\sum_{i=1}^{t} u_{i}+v_{t} \tag{2.5}\\
C_{t} & =Y_{0}^{\mathrm{p}}+\mu_{Y} t+\sum_{i=1}^{t} u_{i} .
\end{align*}
$$

Note: Y_{t} and C_{t} are nonstationary since, conditional on Y_{0}^{p}, the mean and the variance for both variables depend on t. For example,

$$
\begin{align*}
E\left[Y_{t} \mid Y_{0}^{\mathrm{p}}\right] & =Y_{0}^{\mathrm{p}}+\mu_{Y} t, \tag{2.6}\\
V\left[Y_{t} \mid Y_{0}^{\mathrm{p}}\right] & =\sigma_{u}^{2} t+\sigma_{v}^{2} . \tag{2.7}
\end{align*}
$$

Furthermore, the following transformations of aggregate income and consumption are weakly stationary ${ }^{1}$

$$
\begin{align*}
\Delta Y_{t} & =\mu_{Y}+u_{t}+\Delta v_{t}, \tag{2.8}\\
\Delta C_{t} & =\mu_{Y}+u_{t}, \tag{2.9}\\
C_{t}-Y_{t} & =-v_{t} . \tag{2.10}
\end{align*}
$$

Here, $\Delta=1-L$ is the first difference operator and L is the lag operator, i.e. $L x_{t}=x_{t-1}$. Technically, we have found that Y_{t}, C_{t} are integrated of order 1 (denoted by $\mathrm{I}(1)$) and cointegrated of order (1,1) (denoted by $\mathrm{CI}(1,1)$). The latter property means that a linear combination of $\mathrm{I}(1)$ variables is $\mathrm{I}(0)$ (weakly stationary).

The term integrated comes from the observation that, e.g., Y_{t} in (2.5) includes a component where we sum from 1 to t (discrete integration) over a stationary variable. Since we

[^1]sum once over this interval we say that this component is integrated of order 1. The change in Y_{t} includes zero such summations and is therefore integrated of order zero.

3. Vector Autoregressions

Question 1: What is a VAR system?
From equation (2.8) we have that

$$
\begin{equation*}
C_{t}=\mu_{Y}+C_{t-1}+u_{t} . \tag{3.1}
\end{equation*}
$$

That is, aggregate consumption is decribed by an $\operatorname{AR}(1)$ process. Moreover, equation (2.8) also gives us that aggregate income is related to consumption according to

$$
\begin{equation*}
Y_{t}=C_{t}+v_{t} . \tag{3.2}
\end{equation*}
$$

Substituting for C_{t} we obtain

$$
\begin{align*}
Y_{t} & =\mu_{Y}+C_{t-1}+u_{t}+v_{t} \tag{3.3}\\
& =\mu_{Y}+C_{t-1}+w_{t} .
\end{align*}
$$

Collecting (3.1) and (3.3), they can be written in vector form as

$$
\left[\begin{array}{l}
Y_{t} \tag{3.4}\\
C_{t}
\end{array}\right]=\left[\begin{array}{l}
\mu_{Y} \\
\mu_{Y}
\end{array}\right]+\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
Y_{t-1} \\
C_{t-1}
\end{array}\right]+\left[\begin{array}{l}
w_{t} \\
u_{t}
\end{array}\right],
$$

or more compactly

$$
\begin{equation*}
x_{t}=\mu+\Pi_{1} x_{t-1}+\varepsilon_{t}, \tag{3.5}
\end{equation*}
$$

$a \operatorname{VAR}(1)$ system for x_{t}.

- ε_{t} and x_{t-1} are uncorrelated. A consequence of this is that $\varepsilon_{t}=x_{t}-E\left[x_{t} \mid x_{t-1}, x_{t-2}, \ldots\right]$. In other words, ε_{t} is a Wold innovation, i.e. it represent the new information in x_{t} relative to its history.
- The covariance matrix of ε_{t} is given by

$$
\begin{align*}
E\left[\varepsilon_{t} \varepsilon_{t}^{\prime}\right] & =\left[\begin{array}{cc}
E\left[w_{t}^{2}\right] & E\left[w_{t} u_{t}\right] \\
E\left[w_{t} u_{t}\right] & E\left[u_{t}^{2}\right]
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sigma_{u}^{2}+\sigma_{v}^{2} & \sigma_{u}^{2} \\
\sigma_{u}^{2} & \sigma_{u}^{2}
\end{array}\right] \equiv \Sigma, \tag{3.6}
\end{align*}
$$

This matrix is positive definite since $a^{\prime} \Sigma a>0$ for all $a \in \mathbb{R}^{2}: a \neq 0$.

- The system in (3.5) is nonstationary since the individual time series, Y_{t} and C_{t}, are nonstationary.
- The system in (3.5) is a reduced form, i.e. neither the parameters (μ, Π_{1}, Σ) nor the innovations ε_{t} have an economic interpretation.

Question 2: What is a structural VAR system?

Consider the VAR system

$$
\begin{equation*}
B_{0} x_{t}=\gamma+B_{1} x_{t-1}+\eta_{t}, \tag{3.7}
\end{equation*}
$$

where η_{t} is $\operatorname{iid}(0, \Omega)$ and Ω is positive definite.
Roughly, we shall say that (3.7) is a structural $\operatorname{VAR}(1)$ system if the parameters ($\gamma, B_{0}, B_{1}, \Omega$) and/or the innovations η_{t} can be given an economic interpretation.

Note: Combining equations (3.1) and (3.2) we get

$$
\left[\begin{array}{cc}
1 & -1 \tag{3.8}\\
0 & 1
\end{array}\right]\left[\begin{array}{l}
Y_{t} \\
C_{t}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mu_{Y}
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
Y_{t-1} \\
C_{t-1}
\end{array}\right]+\left[\begin{array}{l}
v_{t} \\
u_{t}
\end{array}\right]
$$

where

- u_{t} is a shock to permanent income.
- v_{t} is a shock to transitory income.
- u_{t} and v_{t} are uncorrelated (independent if the joint distribution is Gaussian).

We can examine how Y and C react to permanent and transitory income shocks by using equation (2.5). For income we find that a one standard deviation shock at an arbitrary t in permanent and transitory income, respectively, implies the following responses:

$$
\begin{aligned}
& \operatorname{resp}\left(Y_{t+j} \mid u_{t}=\sigma_{u}, u_{t+1}=\ldots=u_{t+j}=0\right) \quad=\quad \begin{array}{ll}
\sigma_{u} & \text { for all } j \geq 0 \\
\operatorname{resp}\left(Y_{t+j} \mid v_{t}=\sigma_{v}, v_{t+1}=\ldots=v_{t+j}=0\right)
\end{array}= \begin{cases}\sigma_{v} & \text { if } j=0 \\
0 & \text { for all } j \geq 1\end{cases}
\end{aligned}
$$

while the reactions in consumption are:

$$
\begin{array}{rll}
\operatorname{resp}\left(C_{t+j} \mid u_{t}=\sigma_{u}, u_{t+1}=\ldots=u_{t+j}=0\right) & =\sigma_{u} & \text { for all } j \geq 0 \\
\operatorname{resp}\left(C_{t+j} \mid v_{t}=\sigma_{v}, v_{t+1}=\ldots=v_{t+j}=0\right) & =0 & \text { for all } j \geq 0 .
\end{array}
$$

These dynamic functions are called impulse response functions. Notice that permanent income shocks have permanent effects on income and consumption, while transitory income shocks only have transitory effects on income and no effect on consumption.

We can also study the relative importance of the two shocks through forecast error variance decompositions. To derive these parameters we first note that income at $t+j$ is given by

$$
Y_{t+j}=Y_{0}^{\mathrm{p}}+\mu_{Y}(t+j)+\sum_{i=1}^{t+j} u_{i}+v_{t+j} .
$$

Hence, the expectation of Y_{t+j} conditional on current (t) and past values of x (and the parameters) is

$$
E\left[Y_{t+j} \mid x_{t}, x_{t-1}, \ldots\right]=Y_{0}^{\mathrm{p}}+\mu_{Y}(t+j)+\sum_{i=1}^{t} u_{i}
$$

Accordingly, the forecast error for all $j \geq 1$ is

$$
Y_{t+j}-E\left[Y_{t+j} \mid x_{t}, x_{t-1}, \ldots\right]=\sum_{i=t+1}^{t+j} u_{i}+v_{t+j} .
$$

The variance of this random variable is given by

$$
V\left[Y_{t+j}-E\left[Y_{t+j} \mid x_{t}, x_{t-1}, \ldots\right]\right]=j \sigma_{u}^{2}+\sigma_{v}^{2}
$$

The forecast error variance thus contains two parts; one part is due to permanent income shocks while the remainder is due to transitory income shocks. The share of the total forecast error variance explained by permanent income shocks is thus

$$
w_{y p, j}=\frac{j \sigma_{u}^{2}}{j \sigma_{u}^{2}+\sigma_{v}^{2}},
$$

while the share explained by transitory income shocks is

$$
w_{y \tau, j}=\frac{\sigma_{v}^{2}}{j \sigma_{u}^{2}+\sigma_{v}^{2}} .
$$

REMARKS:

1. $w_{y p, j}, w_{y \tau, j} \geq 0$ for all $j \geq 1$,
2. $w_{y p, j}+w_{y \tau, j}=1$ for all $j \geq 1$, and
3. $\lim _{j \rightarrow \infty} w_{y p, j}=1$.

Similar expressions can be derived for consumption.
In summary, to analyse the dynamic behavior of a structural VAR model, impulse response functions represent the reactions in the endogenous variables to the structural shocks, while variance decompositions describe the relative importance of the shocks.

4. Stability and Stationarity

Let $x_{t} \in \mathbb{R}^{n}$ be a vector of random variables generated by the following Gaussian VAR model:

$$
\begin{equation*}
x_{t}=\mu+\sum_{j=1}^{p} \Pi_{j} x_{t-j}+\varepsilon_{t}, \quad t=1,2, \ldots, T \tag{4.1}
\end{equation*}
$$

where for all t

$$
\begin{equation*}
\varepsilon_{t} \sim \operatorname{iid} N_{n}(0, \Sigma) \tag{4.2}
\end{equation*}
$$

while Σ is positive definite and x_{0}, \ldots, x_{1-p} is fixed. The parameter p is called the lag length (order) and is assumed to be finite.

Example: $n=p=1$, i.e. an $\operatorname{AR}(1)$ process.

$$
x_{t}=\mu+\Pi_{1} x_{t-1}+\varepsilon_{t},
$$

or using the lag operator

$$
\left(1-\Pi_{1} L\right) x_{t}=\mu+\varepsilon_{t} .
$$

If $\left|\Pi_{1}\right|<1$, then the polynomial $\left(1-\Pi_{1} Z\right)$ is invertible for all $|z| \leq 1$ and the $\operatorname{AR}(1)$ process is said to be stable. It now follows that

$$
\begin{aligned}
x_{t} & =\left(1-\Pi_{1} L\right)^{-1}\left(\mu+\varepsilon_{t}\right) \\
& =\left(\sum_{j=0}^{\infty} \Pi_{1}^{j} L^{j}\right)\left(\mu+\varepsilon_{t}\right) \\
& =\sum_{j=0}^{\infty} \Pi_{1}^{j} \mu+\sum_{j=0}^{\infty} \Pi_{1}^{j} \varepsilon_{t-j} \\
& =\mu /\left(1-\Pi_{1}\right)+\sum_{j=0}^{\infty} \Pi_{1}^{j} \varepsilon_{t-j} .
\end{aligned}
$$

Hence, an $\mathrm{MA}(\infty)$ representation of x_{t} exists since

$$
\lim _{j \rightarrow \infty}\left|\Pi_{1}\right|^{j}=0 .
$$

It is now easy to compute the mean of x_{t}. This parameter is given by

$$
E\left[x_{t}\right]=\frac{\mu}{1-\Pi_{1}} .
$$

Similarly, the variance is

$$
\begin{aligned}
V\left[x_{t}\right] & =E\left[\left[\sum_{j=0}^{\infty} \Pi_{1}^{j} \varepsilon_{t-j}\right]^{2}\right] \\
& =\sum_{j=0}^{\infty} \Pi_{1}^{2 j} E\left[\varepsilon_{t-j}^{2}\right] \\
& =\Sigma /\left(1-\Pi_{1}^{2}\right) .
\end{aligned}
$$

The autocovariances can be computed similarly. Note first that

$$
\begin{aligned}
x_{t} & =\mu /\left(1-\Pi_{1}\right)+\sum_{j=0}^{h-1} \Pi_{1}^{j} \varepsilon_{t-j}+\sum_{j=h}^{\infty} \Pi_{1}^{j} \varepsilon_{t-j} \\
& =\mu /\left(1-\Pi_{1}\right)+\sum_{j=0}^{h-1} \Pi_{1}^{j} \varepsilon_{t-j}+\sum_{j=0}^{\infty} \Pi_{1}^{j+h} \varepsilon_{t-h-j} .
\end{aligned}
$$

Hence, the autocovariances for all $h \geq 1$ are

$$
\begin{aligned}
C\left[x_{t}, x_{t-h}\right] & =E\left[\left(\sum_{j=0}^{h-1} \Pi_{1}^{j} \varepsilon_{t-j}+\sum_{j=0}^{\infty} \Pi_{1}^{j+h} \varepsilon_{t-h-j}\right)\left(\sum_{j=0}^{\infty} \Pi_{1}^{j} \varepsilon_{t-h-j}\right)\right] \\
& =\sum_{j=0}^{\infty} \Pi_{1}^{2 j+h} E\left[\varepsilon_{t-h-j}^{2}\right] \\
& =\Pi_{1}^{h} \sum_{j=0}^{\infty} \Pi_{1}^{2 j} \Sigma \\
& =\Pi_{1}^{h} \Sigma /\left(1-\Pi_{1}^{2}\right) \\
& =\Pi_{1}^{h} V\left[x_{t}\right] .
\end{aligned}
$$

Finally,

$$
\lim _{h \rightarrow \infty} C\left[x_{t}, x_{t-h}\right]=0,
$$

since $\left|\Pi_{1}\right|<1$.
Conclusion 1: When x_{t} is generated by a stable $\left(\left|\Pi_{1}\right|<1\right) A R(1)$ process and ε_{t} is iid $(0, \Sigma)$ (we have not used the assumption of normality), then x_{t} is also

1. weakly stationary since the first and second moments are invariant with respect to time
2. ergodic since the dependence between x_{t} and x_{t-h} (in an absolute sense) declines as the distance h increases.

Let us now examine the general case. Consider the matrix polynomial

$$
\Pi(z)=I_{n}-\sum_{j=1}^{p} \Pi_{j} z^{j},
$$

obtained from

$$
\Pi(L) x_{t}=\mu+\varepsilon_{t} .
$$

Question 3: Under which condition is $\Pi(z)$ invertible?
Suppose the inverse exists. Then

$$
\Pi(z)^{-1}=\frac{1}{\operatorname{det}[\Pi(z)]} \operatorname{Adj}[\Pi(z)] .
$$

The adjoint (cofactor) matrix of $\Pi(z)$ always exists. Hence, $\Pi(z)$ is invertible if and only if the determinant is nonzero for all $|z| \leq 1$.

The polynomial $\operatorname{det}[\Pi(z)]$ is of order $n p$ since $\Pi(z)$ is $n \times n$ and of order p.

ExAMPLE: Suppose $n=2$. Then

$$
\Pi(z)=\left[\begin{array}{ll}
\Pi_{11}(z) & \Pi_{12}(z) \\
\Pi_{21}(z) & \Pi_{22}(z)
\end{array}\right] .
$$

Hence, the determinant is given by

$$
\operatorname{det}[\Pi(z)]=\Pi_{11}(z) \Pi_{22}(z)-\Pi_{21}(z) \Pi_{12}(z)
$$

Now,

$$
\Pi_{i j}(z)= \begin{cases}1-\sum_{k=1}^{p} \Pi_{i i, k} z^{k} & \text { if } j=i \\ -\sum_{k=1}^{p} \Pi_{i j, k} z^{k} & \text { otherwise }\end{cases}
$$

Hence, for the bivariate case

$$
\begin{aligned}
\operatorname{det}[\Pi(z)]= & \left(1-\sum_{k=1}^{p} \Pi_{11, k} z^{k}\right)\left(1-\sum_{k=1}^{p} \Pi_{22, k} z^{k}\right) \\
& -\left(\sum_{k=1}^{p} \Pi_{21, k} z^{k}\right)\left(\sum_{k=1}^{p} \Pi_{12, k} z^{k}\right) \\
= & 1-\sum_{k=1}^{2 p} \phi_{k} Z^{k} \\
= & \prod_{i=1}^{2 p}\left(1-\lambda_{i} z\right)
\end{aligned}
$$

The parameters ϕ_{k} are determined directly from $\Pi_{i j, k}$. For instance, $\phi_{1}=\Pi_{11,1}+\Pi_{22,1}$, whereas $\phi_{2}=\Pi_{11,2}+\Pi_{22,2}+\Pi_{21,1} \Pi_{12,1}-\Pi_{11,1} \Pi_{22,1}$. The third equality above determines the λ_{i} 's from the ϕ_{k} 's. Notice that while ϕ_{k} is a real number and unique, λ_{i} is a complex number and typically not unique. That is, we need to use some ordering rule before the λ_{i} 's can be uniquely determined.

Conclusion 2: Let $\operatorname{det}[\Pi(z)]=\prod_{i=1}^{n p}\left(1-\lambda_{i} z\right)$, where $\left|\lambda_{n p}\right| \geq\left|\lambda_{n p-1}\right| \geq \ldots \geq\left|\lambda_{1}\right| \geq 0$. Then $\Pi(z)$ is invertible if and only if $\left|\lambda_{n p}\right|<1$.

Let $\left|\lambda_{i}\right|$ denote the modulus of λ_{i} Suppose, that $\lambda_{1}=.5+.6 \imath, \lambda_{2}=.5-.6 \imath$, where $\imath=\sqrt{-1}$. Then

$$
\left|\lambda_{1}\right|=\sqrt{.5^{2}+.6^{2}}=.7810=\left|\lambda_{2}\right| .
$$

An equivalent condition for invertibility is that $\operatorname{det}[\Pi(z)]=0$ if and only if $|z|>1$. The z 's which imply that the determinant is zero are called roots, and this condition states that
all roots must lie outside the unit circle. The λ_{i} 's are eigenvalues of the matrix:

$$
\Pi=\left[\begin{array}{ccccc}
\Pi_{1} & \Pi_{2} & \cdots & \Pi_{p-1} & \Pi_{p} \\
I_{n} & 0 & \cdots & 0 & 0 \\
0 & I_{n} & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & \cdots & I_{n} & 0
\end{array}\right] .
$$

This matrix is found when we rewrite the $\operatorname{VAR}(p)$ system into a $\operatorname{VAR}(1)$ system for $X_{t}=$ $\left(x_{t}, x_{t-1}, \ldots, x_{t-p+1}\right)$, an $n p \times 1$ vector. In the $\operatorname{AR}(1)$ case, $\Pi=\Pi_{1}=\lambda_{1}$ and the invertibility (stability) condition was found to be $\left|\Pi_{1}\right|<1$.

The results in Conclusion 1 thus also hold when $n p>1$. That is, if x_{t} is a stable $\operatorname{VAR}(p)$ process, then x_{t} is weakly stationary and ergodic.

5. Identification and Structural Models

Consider the model

$$
\begin{equation*}
B_{0} x_{t}=\gamma+\sum_{j=1}^{p} B_{j} x_{t-j}+\eta_{t}, \quad t=1,2, \ldots, T, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta_{t} \sim \operatorname{iid} N_{n}(0, \Omega), \tag{5.2}
\end{equation*}
$$

Ω is positive definite, while x_{0}, \ldots, x_{1-p} are fixed.
If B_{0} is invertible, then (5.1) can be written as

$$
\begin{align*}
x_{t} & =B_{0}^{-1} \gamma+\sum_{j=1}^{p} B_{0}^{-1} B_{j} x_{t-j}+B_{0}^{-1} \eta_{t} \tag{5.3}\\
& =\mu+\sum_{j=1}^{p} \Pi_{j} x_{t-j}+\varepsilon_{t},
\end{align*}
$$

where

$$
\begin{equation*}
\varepsilon_{t} \sim \operatorname{iid} N_{n}(0, \Sigma), \tag{5.4}
\end{equation*}
$$

with $\Sigma=B_{0}^{-1} \Omega\left(B_{0}^{\prime}\right)^{-1}$ being positive definite since Ω is positive definite and B_{0} invertible.
Question 4: Can we identify (uniquely determine) the parameters ($\gamma, B_{0}, B_{1}, \ldots, B_{p}, \Omega$) from $\left(\mu, \Pi_{1}, \ldots, \Pi_{p}, \Sigma\right)$?

The general answer is, of course, no. This follows directly from the observation that there are n^{2} additional parameters in (5.1) relative to (5.3). Accordingly, if the parameters in (5.3) are uniquely determined (from the distribution for x_{t}), then to achieve identification of the
parameters in (5.1) it is necessary (but generally not sufficient) to impose n^{2} restrictions (identifying assumptions) on its parameters.

Although uniqueness is often at the heart of what econometricians tend to mean by a structural model, there is no unique definition as to what a structural model is. Let $F(x ; \theta)$ be a distribution function for x which depends on a vector of parameters, θ.

Definition 1 (statistics): A structural model for x is given by a function $F(x ; \theta)$ such that θ is uniquely determined from the probability distribution for x.

Question 5: Is the VAR model in (5.3) a structural model according to this definition?
The answer is yes. $\left(\mu, \Pi_{1}, \ldots, \Pi_{p}, \Sigma\right)$ is uniquely determined from the first and second moments for x_{t}. For example, in the case when p is equal to one and the mean of x is zero we have that

$$
\begin{aligned}
\mu & =0 \\
\Pi_{1} & =E\left[x_{t} x_{t-1}^{\prime}\right] E\left[x_{t-1} x_{t-1}^{\prime}\right]^{-1} \\
\Sigma & =E\left[x_{t} x_{t}^{\prime}\right]+\Pi_{1} E\left[x_{t-1} x_{t-1}^{\prime}\right] \Pi_{1}^{\prime}-E\left[x_{t} x_{t-1}^{\prime}\right] \Pi_{1}^{\prime}-\Pi_{1} E\left[x_{t-1} x_{t}^{\prime}\right] .
\end{aligned}
$$

Hence, the VAR parameters are uniquely determined from the population moments of x.
Question 6: Is the VAR model in (5.1) a structural model according to definition 1?
Since ($\gamma, B_{0}, B_{1}, \ldots, B_{p}, \Omega$) is not uniquely determined from ($\mu, \Pi_{1}, \ldots, \Pi_{p}, \Sigma$), the answer must be no. However, once the parameters of (5.1) are uniquely determined, they are indeed structural in this sense.

An alternative notion of what a structure (or structural model) is, comes from David Hendry. My understanding of what he means by a structure in time series econometrics is the following:

Definition 2 ("Hendry"): A structure is a set of features of the data that remain constant over time, e.g. properties which do not vary across different policy regimes.

An analogy would be a classroom, where the room is a structure whereas the chairs, tables, students and teachers are not. While this definition has certain appeals from a practical (empirical) point of view, it is of limited theoretical interest since parameters are usually considered constant. In other words, the models in (5.1) and in (5.3) are both structures in Hendry's sense since the parameters are taken to be constant. Moreover, as with Definition 1, there is basically no economics in Hendry's idea of what a structure is.

Definition 3 ("Cowles Commission"): A structure is a specific set of relationships between (random) variables x and parameters θ, where the latter can be given an economic interpretation.

The variables x can here include endogenous as well as exogenous variables, while the parameters are taken to be constant (over time or cross sections).

What is important in this definition is that "the parameters" have an economic meaning (that the variables have an economic meaning is implicitly assumed). But this doesn't mean that any transformation of the parameters, e.g. $\phi=f(\theta)$ for a particular function $f(\cdot)$, can be given an economic interpretation. Note also, that this definition does not say that θ satisfies Definition 1. In other words, the structural parameters need not be identified!

Definition 4 ("Sims"): A structural model is a representation of (x, θ) that can be used in decision making, i.e. it generates predictions about the results of different actions.

This definition indicates that a structural model should be useful for, e.g., policy analysis. In that sense, it is similar to Hendry's idea of a structure. Moreover, Sims's definition suggests that θ is identified, i.e. it satisfies the statistical notion of a structural model. Finally, in order for the results of the actions to be meaningful to an economists, θ must have an economic interpretation. Hence, Sims's definition seems to incorporate all the above notions of what a structural model is. Moreover, it suggests that (5.1) can be a structural model whereas (5.3) cannot. ${ }^{2}$

Definition 5 ("Wold"): Economic structures (causal relations) are recursive.

This definition presumes a time series perspective. It states that a variable x_{1} can be causal for x_{2} if x_{1} occurs (is realized) before x_{2}. However, in practise the sampling frequency of macroeconomic time series is typically (much) lower than the frequency between causal events, thus making use of this definition somewhat doubtful.

The early structural VAR analyses, e.g. Sims (1980), are based on so called Wold causal chains with independent innovations (shocks). An economic interpretation is given to the shocks (the actions, e.g. a monetary policy shock) and to the dynamic responses in the endogenous variables (impulse response functions and variance decompositions).

To show that Wold causal chains are exactly identifying, note first that

1. B_{0} is lower triangular (recursive) yields $n(n-1) / 2$ restrictions.
2. Ω is diagonal (mutually independent innovations) yields $n(n-1) / 2$ restrictions.

This gives us a total of $n(n-1)$ identifying restrictions. To exactly identify the parameters of (5.1) we need at least n additional restrictions. These are given by either letting all the diagonal elements of B_{0} or of Ω be equal to unity. For impulse responses functions and variance decompositions, these two choices of the n normalizing assumptions are equivalent.

Consider first the case where $\Omega=I_{n}$. Then $\Sigma=B_{0}^{-1}\left(B_{0}^{\prime}\right)^{-1}$. Since B_{0} is lower triangular, its inverse is also lower triangular. Let P denote the inverse of B_{0}. With $\Sigma=P P^{\prime}$ the matrix

[^2]P is called the Choleski factor of Σ and it can be shown that P is uniquely determined up to an orthogonal transformation N such that N is diagonal with diagonal elements equal to 1 or -1 . That is, $P^{*}=P N$ is also lower triangular and satisfies $\Sigma=P^{*} P^{* \prime}$. In plain english this means that each structural shock is identified up to its sign!

Example: Consider the bivariate case.

$$
\begin{aligned}
{\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
p_{11} & 0 \\
p_{21} & p_{22}
\end{array}\right]\left[\begin{array}{cc}
p_{11} & p_{21} \\
0 & p_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
p_{11}^{2} & p_{11} p_{21} \\
p_{11} p_{21} & p_{22}^{2}+p_{21}^{2}
\end{array}\right] .
\end{aligned}
$$

Solving for the $p_{i j}$'s we obtain

$$
\begin{aligned}
& p_{11}=\sqrt{\sigma_{11}} \\
& p_{21}=\sigma_{12} / \sqrt{\sigma_{11}} \\
& p_{22}=\sqrt{\sigma_{22}-\left(\sigma_{12}^{2} / \sigma_{11}\right)} .
\end{aligned}
$$

Notice that all $p_{i j}$'s are real numbers since Σ is assumed to be positive definite. Moreover, we have chosen the orthogonal matrix $N=I_{2}$.

Consider now the case when we choose to impose the n normalizing assumptions on the diagonal of B_{0}. In the $n=2$ case we have that

$$
\begin{aligned}
\Sigma & =B_{0}^{-1} \Omega\left(B_{0}^{\prime}\right)^{-1} \\
& =\left[\begin{array}{cc}
1 & 0 \\
-\beta_{21} & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
\omega_{11} & 0 \\
0 & \omega_{22}
\end{array}\right]\left[\begin{array}{cc}
1 & -\beta_{21} \\
0 & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
1 & 0 \\
\beta_{21} & 1
\end{array}\right]\left[\begin{array}{cc}
\omega_{11} & 0 \\
0 & \omega_{22}
\end{array}\right]\left[\begin{array}{cc}
1 & \beta_{21} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\omega_{11} & \omega_{11} \beta_{21} \\
\omega_{11} \beta_{21} & \omega_{22}+\beta_{21}^{2} \omega_{11}
\end{array}\right] .
\end{aligned}
$$

Solving for the structural parameters we obtain

$$
\begin{aligned}
\omega_{11} & =\sigma_{11} \\
\beta_{21} & =\sigma_{21} / \sigma_{11} \\
\omega_{22} & =\sigma_{22}-\sigma_{21}^{2} / \sigma_{11} .
\end{aligned}
$$

Here we find that $\omega_{i i}>0$ since Σ is positive definite, while the sign of β_{21} depends on the sign of the covariance between the two residuals in the reduced form VAR.

Alternatively, suppose B_{0} and Ω are given by

$$
B_{0}=\left[\begin{array}{cc}
1 & -\beta_{12} \\
0 & 1
\end{array}\right] \quad \Omega=\left[\begin{array}{cc}
\omega_{11} & 0 \\
0 & \omega_{22}
\end{array}\right]
$$

In this case

$$
\begin{aligned}
{\left[\begin{array}{ll}
\sigma_{11} & \sigma_{12} \\
\sigma_{12} & \sigma_{22}
\end{array}\right] } & =\left[\begin{array}{cc}
1 & -\beta_{12} \\
0 & 1
\end{array}\right]^{-1}\left[\begin{array}{cc}
\omega_{11} & 0 \\
0 & \omega_{22}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-\beta_{12} & 1
\end{array}\right]^{-1} \\
& =\left[\begin{array}{cc}
1 & \beta_{12} \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\omega_{11} & 0 \\
0 & \omega_{22}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
\beta_{12} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\omega_{11}+\beta_{12}^{2} \omega_{22} & \beta_{12} \omega_{22} \\
\beta_{12} \omega_{22} & \omega_{22}
\end{array}\right]
\end{aligned}
$$

Solving for $\beta_{12}, \omega_{11}, \omega_{22}$ we obtain

$$
\begin{aligned}
\omega_{22} & =\sigma_{22} \\
\beta_{12} & =\sigma_{12} / \sigma_{22} \\
\omega_{11} & =\sigma_{11}-\sigma_{12}^{2} / \sigma_{22} .
\end{aligned}
$$

All these choices of B_{0}, Ω are observationally equivalent. The first and the second structural models are equivalent up to a choice of normalization, while the third has very different implications for the behavior of x except when $\sigma_{12}=0$.
As long as we choose to identify B_{0} and Ω from the covariance matrix Σ, all structures will be related to the Choleski decomposition of Σ. For instance, suppose $\Omega=I_{n}$. Then there exists an infinite number of orthogonal matrices N such that $B_{0}=(P N)^{-1}$. In the bivariate case, one such orthogonal matrix is:

$$
N=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] .
$$

Since $N N^{\prime}=I_{2}$ it follows that $P N N^{\prime} P^{\prime}=P P^{\prime}=\Sigma$. However, the matrix B_{0} (for P lower triangular) is now given by

$$
B_{0}=\frac{1}{\sqrt{2} p_{11} p_{22}}\left[\begin{array}{cc}
p_{22}-p_{21} & p_{11} \\
-\left(p_{22}+p_{21}\right) & p_{11}
\end{array}\right] .
$$

Hence, we no longer have a recursive structure!

Example: PIH revisited. Remember that the $\operatorname{VAR}(1)$ system for Y_{t} and C_{t} can be written as

$$
\left[\begin{array}{l}
C_{t} \tag{5.5}\\
Y_{t}
\end{array}\right]=\left[\begin{array}{l}
\mu_{Y} \\
\mu_{Y}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
C_{t-1} \\
Y_{t-1}
\end{array}\right]+\left[\begin{array}{l}
u_{t} \\
w_{t}
\end{array}\right]
$$

where $w_{t}=u_{t}+v_{t}$, while

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{u}^{2} & \sigma_{u}^{2} \tag{5.6}\\
\sigma_{u}^{2} & \sigma_{u}^{2}+\sigma_{v}^{2}
\end{array}\right] .
$$

Similarly, the true structural VAR system is given by

$$
\left[\begin{array}{cc}
1 & 0 \tag{5.7}\\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
C_{t} \\
Y_{t}
\end{array}\right]=\left[\begin{array}{c}
\mu_{Y} \\
0
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{c}
C_{t-1} \\
Y_{t-1}
\end{array}\right]+\left[\begin{array}{l}
u_{t} \\
v_{t}
\end{array}\right],
$$

where

- u_{t} is a permanent income shock, and
- v_{t} is a transitory income shock.

Question 7: Given (5.5) and (5.6), can we derive (5.7) from $\Sigma=B_{0}^{-1} \Omega\left(B_{0}^{\prime}\right)^{-1}$ with Ω diagonal and B_{0} lower triangular with unit diagonal elements?

Under these conditions we obtain

$$
\left[\begin{array}{cc}
\sigma_{u}^{2} & \sigma_{u}^{2} \\
\sigma_{u}^{2} & \sigma_{u}^{2}+\sigma_{u}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\omega_{11} & \beta_{21} \omega_{11} \\
\beta_{21} \omega_{11} & \omega_{22}+\beta_{21}^{2} \omega_{11}
\end{array}\right] .
$$

Accordingly,

$$
\begin{aligned}
\omega_{11} & =\sigma_{u}^{2} \\
\beta_{21} & =1 \\
\omega_{22} & =\sigma_{v}^{2} .
\end{aligned}
$$

and

$$
B_{0}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right], \quad \Omega=\left[\begin{array}{cc}
\sigma_{u}^{2} & 0 \\
0 & \sigma_{v}^{2}
\end{array}\right]
$$

Premultiplying both sides of (5.5) by B_{0} we indeed obtain (5.7).

Now, suppose we change the ordering of the variables while

$$
B_{0}=\left[\begin{array}{cc}
1 & 0 \\
-\beta_{21} & 1
\end{array}\right], \quad \Omega=\left[\begin{array}{cc}
\omega_{11} & 0 \\
0 & \omega_{22}
\end{array}\right] .
$$

Do the resulting "structural shocks" have an economic meaning?
Under the new assumptions we have that

$$
\left[\begin{array}{cc}
\sigma_{u}^{2}+\sigma_{v}^{2} & \sigma_{u}^{2} \\
\sigma_{u}^{2} & \sigma_{u}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\omega_{11} & \beta_{21} \omega_{11} \\
\beta_{21} \omega_{11} & \omega_{22}+\beta_{21}^{2} \omega_{11}
\end{array}\right] .
$$

Solving these 3 equations for $\beta_{21}, \omega_{11}, \omega_{22}$ we get

$$
\begin{aligned}
\omega_{11} & =\sigma_{u}^{2}+\sigma_{v}^{2} \\
\beta_{21} & =\sigma_{u}^{2} /\left(\sigma_{u}^{2}+\sigma_{v}^{2}\right) \\
\omega_{22} & =\sigma_{u}^{2}-\sigma_{u}^{4} /\left(\sigma_{u}^{2}+\sigma_{v}^{2}\right) .
\end{aligned}
$$

Notice that $\omega_{i i}>0$ (as they should be) and that $0<\beta_{21}<1$. Moreover, the resulting structural VAR system is now given by

$$
\left[\begin{array}{cc}
1 & 0 \\
-\beta_{21} & 1
\end{array}\right]\left[\begin{array}{l}
Y_{t} \\
C_{t}
\end{array}\right]=\left[\begin{array}{c}
\mu_{Y} \\
\left(1-\beta_{21}\right) \mu_{Y}
\end{array}\right]+\left[\begin{array}{cc}
0 & 1 \\
0 & 1-\beta_{21}
\end{array}\right]\left[\begin{array}{c}
Y_{t-1} \\
C_{t-1}
\end{array}\right]+\left[\begin{array}{c}
u_{t}+v_{t} \\
\left(1-\beta_{21}\right) u_{t}-\beta_{21} v_{t}
\end{array}\right] .
$$

Hence, the first "structural shock" is the sum of the permanent and the transitory income shock, while the second is another linear combination of the true structural shocks.

The last case illustrates the Cooley and LeRoy (1985) critique against arbitrary orderings of the variables when the identifying assumptions are based on Wold causal chains. If the identifying assumptions do not rely on a particular economic theory, the resulting "structural shocks" can be pure nonsense shocks. Note, however, that this second example is not empirically irrelevant. In fact, models of consumption have a long tradition of using these identifying assumption; see e.g. Davidson, Hendry, Srba, and Yeo (1978). To be fair, the context where it has been used is very different from that of structural VAR's.
If we interpret the second equation in the above structural VAR model as a consumption function we find after a bit of algebra that it can be written as

$$
\begin{equation*}
\Delta C_{t}=\left(1-\beta_{21}\right) \mu_{Y}+\beta_{21} \Delta Y_{t}-\beta_{21}\left(C_{t-1}-Y_{t-1}\right)+\psi_{t} \tag{5.8}
\end{equation*}
$$

where $\psi_{t}=\left(1-\beta_{21}\right) u_{t}-\beta_{21} v_{t}$. We have already noted that $0<\beta_{21}<1$ and that income and consumption are $\mathrm{CI}(1,1)$ with $\left(C_{t}-Y_{t}\right)$ being a cointegration relation. The relationship in (5.8) is consistent with a Keynesian consumption function in the empirical modelling tradition of the so called LSE school (Sargan, Hendry, etc.). The cointegration relationship would then
have the interpretation of a long run consumption rule (or function). The true values of the parameters suggest that, ceteris paribus, an increase in current income by 1 percent leads to an increase in current consumption by less than 1 percent, while consumption over the long run level in the previous period $\left(C_{t-1}>Y_{t-1}\right)$ leads to a partial decrease in current consumption.

The assumption which is critical here is that ΔY_{t} and ψ_{t} are uncorrelated. In terms of the Wold causal chain this means that income is predetermined, i.e. current income does not depend on current consumption.

To choose between the PIH and the Keynesian consumption function we may turn to examining overidentifying assumptions. In our example, the PIH implies that consumption is a random walk (with drift) and is thus consistent with the Hall (1978) version of this hypothesis. In terms of the VAR in (5.3) this implies 2 restrictions on Π_{1}. Once we have established that the data is consistent with these restrictions and we choose to use these restrictions in our analysis, the consumption function in (5.8) is no longer an interesting competing theory.

To sum up, we have shown that two sets of identifying assumptions can yield results which makes sense to an economist. The data will not help us choose between these two structures and we can always find an economists who will argue in favor of one of these theories over the other. Still, when we attempt to identify a structural model, economic theory is, in my opinion, the best guide available to us. If competing theories provide restrictions on the parameters of the reduced form VAR, these may help us choose which theory is consistent with the data.

6. Impulse Response Functions and Variance Decompositions

The notion that a set of impulses and a propagation mechanism are useful tools when analysing an economy goes back to Frisch (1933) and Slutzky (1937).

Impulse response analysis addresses the question:

Question 8: How does x react (over time) to a change in one of the shocks?

Suppose that our $\operatorname{VAR}(p)$ model is stable so that x_{t} is weakly stationary. The resulting VMA representation of the VAR is then

$$
\begin{align*}
x_{t}= & \Pi(L)^{-1}\left(\mu+\varepsilon_{t}\right) \\
= & \Pi(1)^{-1} \mu+\Pi(L)^{-1} \varepsilon_{t} \tag{6.1}\\
= & \delta+C(L) \varepsilon_{t}, \\
& \quad-\mathbf{1 6 -}
\end{align*}
$$

where

$$
C(z)=I_{n}+\sum_{i=1}^{\infty} C_{i} z^{i} .
$$

The structural shocks, η_{t}, are related to the VAR innovations, ε_{t}, according to

$$
\begin{equation*}
\eta_{t}=B_{0} \varepsilon_{t} . \tag{6.2}
\end{equation*}
$$

Hence, we can rewrite the VMA representation as

$$
\begin{align*}
x_{t} & =\delta+C(L) B_{0}^{-1} B_{0} \varepsilon_{t} \tag{6.3}\\
& =\delta+R(L) \eta_{t},
\end{align*}
$$

where

$$
\begin{equation*}
R(z)=\sum_{i=0}^{\infty} R_{i} z^{i}, \tag{6.4}
\end{equation*}
$$

with

$$
R_{i}= \begin{cases}B_{0}^{-1} & \text { if } i=0 \\ C_{i} B_{0}^{-1} & \text { otherwise }\end{cases}
$$

Example: Let

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right] \quad \Omega^{1 / 2}=\left[\begin{array}{cc}
\sqrt{\omega_{11}} & 0 \\
0 & \sqrt{\omega_{22}}
\end{array}\right] .
$$

Consider the following experiment

$$
\eta_{t}= \begin{cases}\Omega^{1 / 2} e_{j} & \text { if } t=t^{*} \tag{6.5}\\ 0 & \text { if } t>t^{*}\end{cases}
$$

Notice that $\Omega^{1 / 2} e_{j}=e_{j} \sqrt{\omega_{j j}}$ measures a one standard deviation increase in the j :th structural shock (while the other shock is zero).

Question 9: What are the responses in $x_{t^{*}}, x_{t^{*}+1}, \ldots$ (relative to $\eta_{t^{*}+j}=0$ for all $j \geq 0$) from such a shock?

Using the structural VMA represenation in (6.3) we find that the impulse response function is:

$$
\begin{align*}
\operatorname{resp}\left(x_{t^{*}} \mid \eta_{t^{*}}=e_{\left.j \sqrt{\omega_{j j}}\right)}\right. & =R_{0} e_{j \sqrt{\omega_{j j}}} \\
\operatorname{resp}\left(x_{t^{*}+1} \mid \eta_{t^{*}}=e_{\left.j \sqrt{\omega_{j j}}\right)}\right. & =R_{1} e_{j \sqrt{\omega_{j j}}} \tag{6.6}\\
& \vdots \\
\operatorname{resp}\left(x_{t^{*}+i} \mid \eta_{t^{*}}=e_{\left.j \sqrt{\omega_{j j}}\right)}\right. & =R_{i} e_{j \sqrt{\omega_{j j}}}
\end{align*}
$$

The vector $R_{i} e_{j}$ is the j :th column of R_{i}. In the limit we have that

$$
\lim _{i \rightarrow \infty} \operatorname{resp}\left(x_{t^{*}+i} \mid \eta_{t^{*}}=e_{j} \sqrt{\omega_{j j}}\right)=0
$$

for all $j \in\{1,2\}$ since x_{t} is ergodic. In other words, for weakly stationary $\operatorname{VAR}(p)$ models, the response in x from any shock vanishes in the long run. Hence, we can say that x_{t} is mean reverting.

QUESTION 10: Is the experiment in equation (6.5) relevant from a statistical point of view?

Shocks at t^{*} and $t *+i$ are independent and, moreover, different structural shocks are independent. Thus, the experiment is consistent with the assumptions about η_{t}.

QUESTION 11: Is the experiment in equation (6.5) relevant from an economics point of view?

If the shocks can be given a credible economic interpretation, the answer would be yes. However, there is no guarantee that the responses in x will be fully consistent with the economic model which the identification of the shocks is based on. This can occur when the economic model implies overidentifying restrictions on the parameters of the VAR model and these restrictions are not consistent with the data.

An important assumption in structural VAR modelling is that the structural shocks are linear combinations of the residuals in the reduced form VAR model (the so called Wold innovations). To illustrate the relevance of this assumption, consider the following univariate process

$$
\begin{equation*}
\eta_{t}=\alpha \eta_{t-1}+\psi_{t}-\alpha^{-1} \psi_{t-1} \tag{6.7}
\end{equation*}
$$

where $|\alpha|<1$ and $\psi_{t} \sim$ iid $N\left(0, \sigma_{\psi}^{2}\right)$. This looks like an ordinary ARMA $(1,1)$ model, where the AR polynomial is invertible while the MA polynomial is not. Also, the MA coefficient is equal to the inverse of the AR coefficient. The polynomial $\left(1-\alpha^{-1} z\right) /(1-\alpha z)$ is called a Blaschke factor.

Since the AR polynomial is invertible, it follows that η_{t} is weakly stationary and that its mean is zero. Moreover, the variance is given by

$$
\begin{aligned}
E\left[\eta_{t}^{2}\right] & =E\left[\alpha^{2} \eta_{t-1}^{2}+\psi_{t}^{2}+\alpha^{-2} \eta_{t-1}^{2}+2 \alpha \eta_{t-1} \psi_{t}-2 \eta_{t-1} \psi_{t-1}-2 \alpha^{-1} \psi_{t} \psi_{t-1}\right] \\
& =\alpha^{2} E\left[\eta_{t-1}^{2}\right]+\sigma_{\psi}^{2}+\alpha^{-2} \sigma_{\psi}^{2}-2 \sigma_{\psi}^{2}
\end{aligned}
$$

With $\sigma_{\eta}^{2}=E\left[\eta_{t}^{2}\right]$ we then obtain

$$
\begin{equation*}
\sigma_{\eta}^{2}=\frac{\left(\alpha^{-2}-1\right) \sigma_{\psi}^{2}}{1-\alpha^{2}} \tag{6.8}
\end{equation*}
$$

Similarly, the first autocovariance is given by

$$
\begin{aligned}
E\left[\eta_{t} \eta_{t-1}\right] & =E\left[\alpha \eta_{t-1}^{2}+\psi_{t} \eta_{t-1}-\alpha^{-1} \psi_{t-1} \eta_{t-1}\right] \\
& =\alpha \sigma_{\eta}^{2}-\alpha^{-1} \sigma_{\psi}^{2} \\
& =\left[\alpha\left(\alpha^{-2}-1\right) \sigma_{\psi}^{2}-\alpha^{-1}\left(1-\alpha^{2}\right) \sigma_{\psi}^{2}\right] /\left(1-\alpha^{2}\right) \\
& =0
\end{aligned}
$$

Finally, it can be shown that for all $h \geq 2$

$$
E\left[\eta_{t} \eta_{t-h}\right]=\alpha E\left[\eta_{t-1} \eta_{t-h}\right]=0
$$

Accordingly, the parameters $\alpha, \sigma_{\psi}^{2}$ cannot be uniquely determined from the distribution for η since this random variable is not serially correlated. Still, for any pair ($\alpha, \sigma_{\psi}^{2}$) consistent with the population variance of η, there is a dynamic reaction in η from a shock to ψ. For instance, consider the experiment

$$
\psi_{t}= \begin{cases}\sigma_{\psi} & \text { if } t=t^{*} \\ 0 & \text { if } t>t^{*}\end{cases}
$$

The response in $\eta_{t^{*}}$ is then given by

$$
\operatorname{resp}\left(\eta_{t^{*}} \mid \psi_{t^{*}}=\sigma_{\psi}\right)=\sigma_{\psi}
$$

while for $i \geq 1$ we obtain

$$
\operatorname{resp}\left(\eta_{t^{*}+i} \mid \psi_{t^{*}}=\sigma_{\psi}\right)=\alpha^{i-1}\left(\alpha-\alpha^{-1}\right) \sigma_{\psi} \neq 0
$$

The impulse response function for x from an experiment where η_{t} is equal to σ_{η} at $t=t^{*}$ and 0 for $t>t^{*}$ is very different from the impulse response function for x when (for some $\alpha \neq 0$) we consider an experiment based on ψ. This means that the impulse responses are not uniquely determined unless we are willing to either choose a particular value for α, or assume that the structural shocks are linear combinations of the Wold innovations.

QUESTION 12: Should we worry about Blaschke factors?
According to Lippi and Reichlin (1993), modern macroeconomic models which are linearized into dynamic systems tend to include noninvertible MA components. While this is certainly a problem from the point of view of estimating a multivariate ARMA model, we should keep in mind that noninvertibility of an MA term does not mean that there exists an AR factor whose coefficient is the inverse of the MA coefficient in question. Still, it emphasizes the point made earlier that sound structural VAR analysis should rest on a firm theoretical basis.
A variance decomposition, or innovation accounting, measures the share of the forecast error variance which is accounted for by a particular shock. Hence, variance decompositions address the question:

Question 13: How important is a particular shock (relative to all the other shocks) for explaining the fluctuations in x ?

To construct the forecast error variance, from (6.3) we have for all $h \geq 1$ that

$$
x_{t+h}=\delta+\sum_{k=0}^{\infty} R_{k} \eta_{t+h-k}
$$

The optimal prediction of x_{t+h} given all information available at period t is the conditional expectation. ${ }^{3}$ Hence,

$$
\begin{equation*}
E\left[x_{t+h} \mid x_{t}, x_{t-1}, \ldots\right]=\delta+\sum_{k=h}^{\infty} R_{k} \eta_{t+h-k} \tag{6.9}
\end{equation*}
$$

The forecast error is therefore

$$
\begin{equation*}
\varphi_{t+h \mid t}=\sum_{k=0}^{h-1} R_{k} \eta_{t+h-k} \tag{6.10}
\end{equation*}
$$

a VMA process of order (h-1). Consequently, the forecast error covariance matrix for x is

$$
\begin{equation*}
V_{h}=E\left[\varphi_{t+h \mid t} \varphi_{t+h \mid t}^{\prime}\right]=\sum_{k=0}^{h-1} R_{k} \Omega R_{k}^{\prime} \tag{6.11}
\end{equation*}
$$

Notice that this covariance matrix is invariant to the choice of identification, i.e. $V_{h}=$ $\sum_{k=0}^{h-1} C_{k} \Sigma C_{k}^{\prime}$.

For a particular variable $i \in\{1, \ldots, n\}$ the h steps ahead forecast error variance is given by the i :th diagonal element of V_{h}. With e_{i} being the i :th column of I_{n} this variance can be written as

$$
\begin{equation*}
v_{i, h}=e_{i}^{\prime} V_{h} e_{i}=\sum_{k=0}^{h-1} e_{i}^{\prime} R_{k} \Omega R_{k}^{\prime} e_{i} \tag{6.12}
\end{equation*}
$$

[^3]Let $R_{i j, k}$ denote the (i, j) :th element of R_{k}. It then follows that

$$
\begin{aligned}
e_{i}^{\prime} R_{k} \Omega R_{k}^{\prime} e_{i} & =\left[\begin{array}{lll}
R_{i 1, k} & \cdots & R_{i n, k}
\end{array}\right]\left[\begin{array}{ccc}
\omega_{11} & & 0 \\
& \ddots & \\
0 & & \omega_{n n}
\end{array}\right]\left[\begin{array}{c}
R_{i 1, k} \\
\vdots \\
R_{i n, k}
\end{array}\right] \\
& =\sum_{j=1}^{n} R_{i j, k}^{2} \omega_{j j} .
\end{aligned}
$$

Hence, equation (6.12) can be rewritten as

$$
\begin{equation*}
v_{i, h}=\sum_{k=0}^{h-1} \sum_{j=1}^{n} R_{i j, k}^{2} \omega_{j j} . \tag{6.13}
\end{equation*}
$$

Multiplying both sides by $1 / v_{i, h}$ we thus obtain

$$
\begin{align*}
1 & =\sum_{k=0}^{h-1} \sum_{j=1}^{n} R_{i j, k}^{2} \omega_{j j} / v_{i, h} \\
& =\sum_{j=1}^{n}\left(\sum_{k=0}^{h-1} R_{i j, k}^{2} \omega_{j j} / v_{i, h}\right) \tag{6.14}\\
& =\sum_{j=1}^{n} w_{i j, h} .
\end{align*}
$$

The parameter $w_{i j, h}$ takes values in the unit interval and measures the fraction of the h steps ahead forecast error variance for variable i which is accounted for by shock j.

Example: Suppose $n=2$ with Ω diagonal and B_{0} lower triangular with unit diagonal elements. With $R_{0}=B_{0}^{-1}$ the 1 step ahead forecast error variance is

$$
\begin{aligned}
V_{1} & =R_{0} \Omega R_{0}^{\prime} \\
& =\left[\begin{array}{cc}
1 & 0 \\
\beta_{21} & 1
\end{array}\right]\left[\begin{array}{cc}
\omega_{11} & 0 \\
0 & \omega_{22}
\end{array}\right]\left[\begin{array}{cc}
1 & \beta_{21} \\
0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
\omega_{11} & \beta_{21} \omega_{11} \\
\beta_{21} \omega_{11} & \omega_{22}+\beta_{21}^{2} \omega_{11}
\end{array}\right] .
\end{aligned}
$$

The 1 step ahead forecast error variances are thus

$$
\begin{array}{ll}
\text { variable 1: } & \omega_{11}=\sigma_{11} \tag{6.15}\\
\text { variable 2: } & \omega_{22}+\beta_{21}^{2} \omega_{11}=\sigma_{22}
\end{array}
$$

Hence, the 1 step ahead forecast error variance for each variable is invariant with respect to the choice of identification. The variance decompositions, however, are not invariant. For 1 step ahead forecast errors, the share of the total variance for the first variable which is explained by the first (second) shock is unity (zero). For the second variable, the share due
to the first shock is $\beta_{21}^{2} \omega_{11} / \sigma_{22}$ while the share due to the second shock is $\omega_{22} / \sigma_{22}$. if we instead assume that the B_{0} matrix is upper triangular (with unit diagonal elements), for the second variable variable we find that the share of the 1 step ahead forecast error variance due to the second (first) shock is unity (zero). Moreover, for the first variable both shocks may now account for the error variance.

7. Cointegration and Common Trends

It has long been recognized that many macroeconomic time series are trending and thus not well described as weakly stationary. To transform the data into appropriate stationary series various detrending techniques have been considered. Common among these are the linear trend model and the first difference model.

Example: PIH revisited. From equation (2.5) we find that both variables have a linear trend when $\mu_{Y} \neq 0$. However, removal of this trend does not make the variables stationary since they also include a stochastic trend, $\sum_{i=1}^{t} u_{i}$. Hence, the linear trend model is not appropriate for rendering nonstationary variables stationary in this model.

By taking first differences, we know from equations (2.8) that these transformations make income and consumption stationary. Still, there does not exist a VAR model with finite lag order for the first differences. In fact, if we subtract C_{t-1} from the consumption equation of (3.4) we have that

$$
\begin{equation*}
\Delta C_{t}=\mu_{Y}+u_{t}, \tag{7.1}
\end{equation*}
$$

while subtracting Y_{t-1} from the income equation of produces

$$
\begin{equation*}
\Delta Y_{t}=\mu_{Y}+C_{t-1}-Y_{t-1}+w_{t} . \tag{7.2}
\end{equation*}
$$

In vector form we thus have that

$$
\left[\begin{array}{c}
\Delta C_{t} \tag{7.3}\\
\Delta Y_{t}
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
C_{t-1} \\
Y_{t-1}
\end{array}\right]+\left[\begin{array}{l}
u_{t} \\
w_{t}
\end{array}\right] .
$$

Hence, once the left hand side variables have been transformed into first differences, the levels of lagged income and consumption still appears on the right hand side of the model. Moreover, the matrix of coefficients on the lagged levels has reduced rank (lower rank than
dimension). Specifically,

$$
\begin{aligned}
\Pi & =\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -1
\end{array}\right] \\
& =\alpha \beta^{\prime}
\end{aligned}
$$

where the vectors α, β have rank 1 . Finally, the product Πx_{t-1} yields

$$
\begin{aligned}
\Pi x_{t-1} & =\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
C_{t-1} \\
Y_{t-1}
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left(C_{t-1}-Y_{t-1}\right) .
\end{aligned}
$$

Hence, the product produces a vector of weights α on the cointegration relation between consumption and income. VAR models in first differences do not take this relation into account and are therefore misspecified.

An alternative way of deriving an appropriate transformation of the variables in the VAR model is to calculate the number of unit roots. If this number is lower than the dimension of the VAR, then a VAR model in first differences will be overdifferenced. In the PIH case we have that

$$
\Pi(z)=\left[\begin{array}{cc}
1-z & 0 \tag{7.4}\\
-z & 1
\end{array}\right] .
$$

This matrix polynomial has exactly 1 unit root and no roots inside the unit circle. Hence, the number of variables (2) exceeds the number of unit roots.

To generalize these observations, consider again the $\operatorname{VAR}(1)$ model for x_{t} in (3.5). Subtracting x_{t-1} from both sides we obtain

$$
\begin{align*}
\Delta x_{t} & =\mu+\Pi_{1} x_{t-1}-x_{t-1}+\varepsilon_{t} \\
& =\mu+\left(\Pi_{1}-I_{n}\right) x_{t-1}+\varepsilon_{t} \tag{7.5}\\
& =\mu+\Pi x_{t-1}+\varepsilon_{t}
\end{align*}
$$

where $\Pi=-\left(I_{n}+\Pi_{1}\right)=-\Pi(1)$ (in terms of the polynomial $\Pi(z)=I_{n}-\Pi_{1} z$).

To ensure that x_{t} is $\mathrm{I}(d)$ with the integer $d \geq 0$, we shall assume that $\operatorname{det}[\Pi(z)]=0$ if and only if $|z|>1$ or $z=1$. In other words, there are neither explosive $(|z|<1)$ nor seasonal ($Z=-1$) roots.

1. If $\operatorname{rank}[\Pi]=n$, then there are no unit roots so x_{t} is weakly stationary.
2. If $\operatorname{rank}[\Pi]=0$, then $\Pi(z)=\left(I_{n}-I_{n} z\right)$. Accordingly, $\Delta x_{t}=\mu+\varepsilon_{t}$ and x_{t} is $I(1)$ but not cointegrated.
3. If rank[ח] $=r$ with $r \in\{1, \ldots, n-1\}$ and the number of unit roots is equal to $n-r$, then x_{t} is $\mathrm{CI}(1,1)$ with $\Pi=\alpha \beta^{\prime}$ and $\beta^{\prime} x_{t}$ being $\mathrm{I}(0)$.

While the first two cases are not too difficult to understand, the third case is far from obvious. Specifically, what is the importance of the condition that "... the number of unit roots is equal to $n-r \ldots$ "?

EXAMPLE: Consider a bivariate VAR(1) model where

$$
\left[\begin{array}{l}
x_{1, t} \tag{7.6}\\
x_{2, t}
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1, t-1} \\
x_{2, t-1}
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{1, t} \\
\varepsilon_{2, t}
\end{array}\right]
$$

For this model we have that

$$
\Pi(z)=\left[\begin{array}{cc}
1-2 z & z \\
-z & 1
\end{array}\right]
$$

Accordingly, $\operatorname{det}[\Pi(z)]=1-2 z+z^{2}=(1-z)^{2}$. Hence, there are 2 unit roots. At the same time,

$$
\Pi=\left[\begin{array}{cc}
1 & -1 \\
1 & -1
\end{array}\right]
$$

has rank 1. Hence, the number of unit roots is greater than $n-r=1$. In this case, x_{t} is still integrated but not $\mathrm{I}(1)$.

If we subtract x_{t-1} from both sides of equation (7.6) we get

$$
\begin{align*}
{\left[\begin{array}{l}
\Delta x_{1, t} \\
\Delta x_{2, t}
\end{array}\right] } & =\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1, t-1} \\
x_{2, t-1}
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{1, t} \\
\varepsilon_{2, t}
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1, t-1} \\
x_{2, t-1}
\end{array}\right]+\left[\begin{array}{l}
\varepsilon_{1, t} \\
\varepsilon_{2, t}
\end{array}\right] \tag{7.7}\\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left(x_{1, t-1}-x_{2, t-1}\right)+\left[\begin{array}{l}
\varepsilon_{1, t} \\
\varepsilon_{2, t}
\end{array}\right] .
\end{align*}
$$

From this equation it can be seen that ($x_{1, t}-x_{2, t}$) is integrated of an order less than $x_{1, t}$ and $x_{2, t}$. Subtracting $\Delta x_{2, t}$ from $\Delta x_{1, t}$ we obtain

$$
\begin{align*}
\Delta x_{1, t}-\Delta x_{2, t} & =\Delta\left(x_{1, t}-x_{2, t}\right) \tag{7.8}\\
& =\varepsilon_{1, t}-\varepsilon_{2, t}
\end{align*}
$$

In other words, $\left(x_{1, t}-x_{2, t}\right)$ is $\mathrm{I}(1)$ and we must therefore have that x_{t} is $\mathrm{I}(2)$.
Hence, this example illustrates that the condition "... the number of unit roots is equal to $(n-r) \ldots$ " rules out the cases when x_{t} is $\mathrm{I}(d)$ with $d \geq 2$.

In the PIH case, the number of unit roots is exactly equal to ($n-r$) and thus satisfies the conditions in case (3) above.

Returning to the $\operatorname{VAR}(1)$ model in (7.5), we can express the matrix Π as

$$
\begin{equation*}
\Pi=\alpha \beta^{\prime} \tag{7.9}
\end{equation*}
$$

where α, β are $n \times r$ matrices with full column rank. The error correction representation of the model can now be expressed as

$$
\begin{equation*}
\Delta x_{t}=\mu+\alpha \beta^{\prime} x_{t-1}+\varepsilon_{t} . \tag{7.10}
\end{equation*}
$$

When Π has reduced rank and the number of unit roots equals the rank reduction $(n-r)$, then x_{t} is $\mathrm{CI}(1,1)$ with $\beta^{\prime} x_{t}$ being the r cointegration relations. ${ }^{4}$

Note that the parameters (α, β) are not uniquely determined. For any $r \times r$ nonsingular matrix ξ we have that $\beta^{* \prime} x_{t}=\xi \beta^{\prime} x_{t}$ is also $\mathrm{I}(0)$. With $\alpha^{*}=\alpha \xi^{-1}$ it follows that $\Pi=\alpha^{*} \beta^{* \prime}$. In other words, the cointegration space, $\operatorname{sp}(\beta)$, is uniquely determined from Π, but the basis is not.

In the PIH example, we have that $\left(C_{t}-Y_{t}\right)$ is $\mathrm{I}(0)$, but so is $a\left(C_{t}-Y_{t}\right)$ for any finite $a \neq 0$.

[^4]QUESTION 14: How do we invert VAR models with unit roots?

ExAmple: For the PIH, the VAR model with a cointegration constraint is given in (7.3). With $\left(C_{t}-Y_{t}\right)=-v_{t}$ the income growth equation can be written

$$
\begin{aligned}
\Delta Y_{t} & =\mu_{Y}+w_{t}-v_{t-1} \\
& =\mu_{Y}+w_{t}+u_{t-1}-\left(u_{t-1}+v_{t-1}\right) \\
& =\mu_{Y}+w_{t}+u_{t-1}-w_{t-1}
\end{aligned}
$$

The MA representation for consumption and income growth is then

$$
\left[\begin{array}{l}
\Delta C_{t} \tag{7.11}\\
\Delta Y_{t}
\end{array}\right]=\left[\begin{array}{l}
\mu_{Y} \\
\mu_{Y}
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{t} \\
w_{t}
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
u_{t-1} \\
w_{t-1}
\end{array}\right]
$$

or

$$
\begin{equation*}
\Delta x_{t}=\delta+\left(I_{2}+C_{1} L\right) \varepsilon_{t} \tag{7.12}
\end{equation*}
$$

In this case, the inverted error correction model is an MA(1) process for the first differences. As we shall see below, the MA representation for Δx_{t} is usually of infinite order.

Notice also that $C(z)=I_{2}+C_{1} Z$ is not invertible. Specifically,

$$
\operatorname{det}[C(z)]=1-z
$$

This is, of course, just the other side of the coin of the fact that there does not exist a finite order VAR model for the first differences.

The result that $C(z)$ has a unit root, means that $C=C(1)$ has reduced rank. In particular,

$$
C=\left[\begin{array}{ll}
1 & 0 \tag{7.13}\\
1 & 0
\end{array}\right]
$$

Notice that C is orthogonal to α and β. Specifically, $\beta^{\prime} C=0$ and $C \alpha=0$. Moreover,

$$
\begin{align*}
C(z)-C & =\left[\begin{array}{cc}
1 & 0 \\
z & 1-z
\end{array}\right]-\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cc}
0 & 0 \\
z-1 & 1-z
\end{array}\right] \tag{7.14}\\
& =(1-z)\left[\begin{array}{cc}
0 & 0 \\
-1 & 1
\end{array}\right]
\end{align*}
$$

Hence, although $C(z)$ itself does not have a common factor, $(1-z)$, its deviation from C does. We can therefore express the $C(z)$ polynomial as

$$
\begin{equation*}
C(z)=C+(1-z) C^{*} . \tag{7.15}
\end{equation*}
$$

Substituting for $C(z)$ in equation (7.11) we have that

$$
\begin{align*}
x_{t} & =x_{t-1}+\delta+C \varepsilon_{t}+C^{*}\left(\varepsilon_{t}-\varepsilon_{t-1}\right) \\
& =\left[x_{t-2}+\delta+C \varepsilon_{t-1}+C^{*}\left(\varepsilon_{t-1}-\varepsilon_{t-2}\right)\right]+\delta+C \varepsilon_{t}+C^{*}\left(\varepsilon_{t}-\varepsilon_{t-1}\right) \tag{7.16}\\
& =x_{t-2}+\delta 2+C\left(\varepsilon_{t}+\varepsilon_{t-1}\right)+C^{*}\left(\varepsilon_{t}-\varepsilon_{t-2}\right) \\
& =x_{0}-C^{*} \varepsilon_{0}+\delta t+C \sum_{i=1}^{t} \varepsilon_{i}+C^{*} \varepsilon_{t} .
\end{align*}
$$

We have thus found that the "conditional" MA representation for consumption and income contains (i) an I(1) component ($\delta t+C \sum_{i=1}^{t} \varepsilon_{i}$); (ii) an I(0) component ($C^{*} \varepsilon_{t}$); and (iii) initial values ($x_{0}-C^{*} \varepsilon_{0}$). The fact that the MA representation includes the third component is reason why I call it a conditional representation.

The I(1) component of the conditional MA representation can also be expressed as

$$
\begin{align*}
x_{t}^{\mathrm{p}} & =\left[\begin{array}{l}
\mu_{Y} \\
\mu_{Y}
\end{array}\right] t+\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right] \sum_{i=1}^{t}\left[\begin{array}{l}
u_{i} \\
w_{i}
\end{array}\right] \\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left(\mu_{Y} t+\sum_{i=1}^{t} u_{i}\right) \tag{7.17}\\
& =\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mu_{Y} \\
\mu_{Y}
\end{array}\right] t+\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 0
\end{array}\right] \sum_{i=1}^{t}\left[\begin{array}{l}
u_{i} \\
w_{i}
\end{array}\right] \\
& =\beta_{\perp} \alpha_{\perp}^{\prime} \mu t+\beta_{\perp} \alpha_{\perp}^{\prime} \sum_{i=1}^{t} \varepsilon_{i} .
\end{align*}
$$

Here, $\alpha_{\perp}^{\prime} \alpha=0$ and $\beta_{\perp}^{\prime} \beta=0$. From equation (7.17) it can be seen that income and consumption have 1 common trend. This trend can be represented by $\alpha_{\perp}^{\prime}\left(\mu t+\sum_{i=1}^{t} \varepsilon_{i}\right)$. Moreover, we find that $\beta^{\prime} x_{t}^{\mathrm{p}}=0$ since $\beta^{\prime} x_{t}$ is $\mathrm{I}(0)$ and cannot include the $\mathrm{I}(1)$ component in x_{t}. Hence, the cointegration vector acts as a detrending model.

To generalize these results to the $\operatorname{VAR}(1)$ model, note first that equation (7.10) can be rewritten as

$$
\begin{equation*}
x_{t}=\mu+\left(I_{n}+\alpha \beta^{\prime}\right) x_{t-1}+\varepsilon_{t} . \tag{7.18}
\end{equation*}
$$

Premultiplying this system by β^{\prime} yields

$$
\begin{align*}
\beta^{\prime} x_{t} & =\beta^{\prime} \mu+\beta^{\prime}\left(I_{n}+\alpha \beta^{\prime}\right) x_{t-1}+\beta^{\prime} \varepsilon_{t} \tag{7.19}\\
& =\beta^{\prime} \mu+\left(I_{r}+\beta^{\prime} \alpha\right) \beta^{\prime} x_{t-1}+\beta^{\prime} \varepsilon_{t},
\end{align*}
$$

a $\operatorname{VAR}(1)$ model for the cointegration relations. Solving this model recursively we obtain

$$
\begin{align*}
\beta^{\prime} x_{t} & =\sum_{i=0}^{\infty}\left(I_{r}+\beta^{\prime} \alpha\right)^{i} \beta^{\prime} \mu+\sum_{i=0}^{\infty}\left(I_{r}+\beta^{\prime} \alpha\right)^{i} \beta^{\prime} \varepsilon_{t-i} \tag{7.20}\\
& =-\left(\beta^{\prime} \alpha\right)^{-1} \beta^{\prime} \mu+\sum_{i=0}^{\infty}\left(I_{r}+\beta^{\prime} \alpha\right)^{i} \beta^{\prime} \varepsilon_{t-i},
\end{align*}
$$

an $\mathrm{MA}(\infty)$ representation for the r cointegration relations. Notice that if $\operatorname{rank}\left(\beta^{\prime} \alpha\right)<r$, then the polynomial $\left(I_{r}-\left(I_{r}+\beta^{\prime} \alpha\right) z\right)$ contains a unit root. This is ruled out by the assumption that the number of unit roots equals $(n-r) .^{5}$

Substituting equation (7.20) for $\beta^{\prime} x_{t-1}$ in (7.10) we have found the MA representation for Δx_{t}. Specifically, it is given by

$$
\begin{align*}
\Delta x_{t} & =\left(I_{n}-\alpha\left(\beta^{\prime} \alpha\right)^{-1} \beta^{\prime}\right) \mu+\varepsilon_{t}+\sum_{i=1}^{\infty} \alpha\left(I_{r}+\beta^{\prime} \alpha\right)^{(i-1)} \beta^{\prime} \varepsilon_{t-i} \tag{7.21}\\
& =\delta+\sum_{i=0}^{\infty} C_{i} \varepsilon_{t-i},
\end{align*}
$$

where $C_{0}=I_{n}$.
To show that $C(z)$ has unit roots, note first that

$$
\begin{align*}
C & =I_{n}+\sum_{i=1}^{\infty} \alpha\left(I_{r}+\beta^{\prime} \alpha\right)^{(i-1)} \beta^{\prime} \tag{7.2}\\
& =I_{n}-\alpha\left(\beta^{\prime} \alpha\right)^{-1} \beta^{\prime} .
\end{align*}
$$

Second, for any $\alpha_{\perp}, \beta_{\perp} \in \mathbb{R}^{n \times(n-r)}$ of rank $(n-r)$ such that $\alpha_{\perp}^{\prime} \alpha=0$ and $\beta_{\perp}^{\prime} \beta=0$ it holds that

$$
\begin{equation*}
I_{n}=\beta_{\perp}\left(\alpha_{\perp}^{\prime} \beta_{\perp}\right)^{-1} \alpha_{\perp}^{\prime}+\alpha\left(\beta^{\prime} \alpha\right)^{-1} \beta^{\prime} . \tag{7.23}
\end{equation*}
$$

This can be verified through premultiplication of both sides by α_{\perp}^{\prime} or β^{\prime} or through postmultiplication by α or β_{\perp}. The choice of basis for α_{\perp} and β_{\perp} is irrelevant since $\alpha_{\perp}^{*}=\alpha_{\perp} \zeta$, $\beta_{\perp}^{*}=\beta_{\perp} \xi$ (where ζ and ξ are nonsingular ($\left.n-r\right) \times(n-r)$ matrices) satisfy

$$
\beta_{\perp}^{*}\left(\alpha_{\perp}^{* \prime} \beta_{\perp}^{*}\right)^{-1} \alpha_{\perp}^{* \prime}=\beta_{\perp}\left(\alpha_{\perp}^{\prime} \beta_{\perp}\right)^{-1} \alpha_{\perp}^{\prime} .
$$

Using equation (7.23) we thus have that

$$
\begin{equation*}
C=\beta_{\perp}\left(\alpha_{\perp}^{\prime} \beta_{\perp}\right)^{-1} \alpha_{\perp}^{\prime}, \tag{7.24}
\end{equation*}
$$

[^5]in the $\operatorname{VAR}(1)$ model. ${ }^{6}$ Accordingly, we find that
\[

$$
\begin{equation*}
\operatorname{rank}[C]=n-r, \tag{7.25}
\end{equation*}
$$

\]

and $C(z)$ thus has r unit units.
To show that $C(z)$ corrected for C has a common unit root, we use brute force. That is

$$
\begin{align*}
C(z)-C= & \sum_{i=1}^{\infty} C_{i} z^{i}-\sum_{i=1}^{\infty} C_{i} \\
= & -(1-z)\left[\sum_{i=1}^{\infty} C_{i}\right]-\left[\sum_{i=1}^{\infty} C_{i}\right] z+\sum_{i=1}^{\infty} C_{i} z^{i} \\
= & -(1-z)\left[\sum_{i=1}^{\infty} C_{i}\right]-\left[\sum_{i=1}^{\infty} C_{i}\right] z+C_{1} z+\sum_{i=2}^{\infty} C_{i} z^{i} \\
= & -(1-z)\left[\sum_{i=1}^{\infty} C_{i}\right]-\left[\sum_{i=2}^{\infty} C_{i}\right] z+\sum_{i=2}^{\infty} C_{i} z^{i} \\
= & -(1-z)\left[\sum_{i=1}^{\infty} C_{i}\right]-(1-z)\left[\sum_{i=2}^{\infty} C_{i}\right] z-\left[\sum_{i=2}^{\infty} C_{i}\right] z^{2} \\
& +\sum_{i=2}^{\infty} C_{i} z^{i} \\
= & -(1-z)\left[\sum_{i=1}^{\infty} C_{i}\right]-(1-z)\left[\sum_{i=2}^{\infty} C_{i}\right] z-\left[\sum_{i=2}^{\infty} C_{i}\right] z^{2} \tag{7.26}\\
& +C_{2} z^{2}+\sum_{i=3}^{\infty} C_{i} z^{i} \\
= & -(1-z)\left[\sum_{i=1}^{\infty} C_{i}\right]-(1-z)\left[\sum_{i=2}^{\infty} C_{i}\right] z-\left[\sum_{i=3}^{\infty} C_{i}\right] z^{2} \\
& +\sum_{i=3}^{\infty} C_{i} z^{i} \\
= & -(1-z)\left[\sum_{i=1}^{\infty} C_{i}\right]-(1-z)\left[\sum_{i=2}^{\infty} C_{i}\right] z-(1-z)\left[\sum_{i=3}^{\infty} C_{i}\right] z^{2} \\
& -\left[\sum_{i=3}^{\infty} C_{i}\right] z^{3}+\sum_{i=3}^{\infty} C_{i} z^{i} \\
= & (1-z) \sum_{j=0}^{k}\left[-\sum_{i=j+1}^{\infty} C_{i}\right] z^{j}-\left[\sum_{i=k+1}^{\infty} C_{i}\right] z^{k}+\sum_{i=k+1}^{\infty} C_{i} z^{i} .
\end{align*}
$$

The last two terms on the right hand side of the last equality vanish as k becomes very large, while the first term converges when the C_{i} matrices satisfy a summability condition. In that case, we obtain

$$
\begin{equation*}
C(z)-C=(1-z) \sum_{j=0}^{\infty} C_{j}^{*} z^{j}, \quad C_{j}^{*}=-\sum_{i=j+1}^{\infty} C_{i}, \quad j=0,1, \ldots . \tag{7.27}
\end{equation*}
$$

The summability condition we require C_{i} to satisfy is such that the C_{j}^{*} matrices are absolutely summable. That is,

$$
\begin{aligned}
\sum_{j=0}^{\infty}\left|C_{j}^{*}\right| & =\sum_{j=0}^{\infty}\left|\sum_{i=j+1}^{\infty} C_{i}\right| \\
& =\sum_{i=1}^{\infty} i\left|C_{i}\right|<\infty .
\end{aligned}
$$

Hence, the C_{i} matrices must be 1 -summable. For finite order VAR models, this condition will always be satisfied since its MA representation has exponentially decreasing (in an absolute sense) parameters.

[^6]In our $\operatorname{VAR}(1)$ model, the C_{j}^{*} matrices are for all $j \geq 0$

$$
\begin{align*}
C_{j}^{*} & =-\sum_{j=i+1}^{\infty} \alpha\left(I_{r}+\beta^{\prime} \alpha\right)^{(i-1)} \beta^{\prime} \\
& =-\alpha\left(\sum_{i=j}^{\infty}\left[I_{r}+\beta^{\prime} \alpha\right]^{i}\right) \beta^{\prime} \tag{7.28}\\
& =-\alpha\left(I_{r}+\beta^{\prime} \alpha\right)^{j}\left(\sum_{i=0}^{\infty}\left[I_{r}+\beta^{\prime} \alpha\right]^{i}\right) \beta^{\prime} \\
& =\alpha\left(I_{r}+\beta^{\prime} \alpha\right)^{j}\left(\beta^{\prime} \alpha\right)^{-1} \beta^{\prime} .
\end{align*}
$$

It is now straightforward to show that these matrices indeed are absolutely summable ${ }^{7}$ and thus that the $C(z)$ matrix polynomial can be expressed as

$$
\begin{equation*}
C(z)=C+(1-z) C^{*}(z) . \tag{7.29}
\end{equation*}
$$

Substituting for $C(z)$ in equation (7.21) we get

$$
\begin{align*}
x_{t} & =x_{t-1}+C \mu+C \varepsilon_{t}+\sum_{j=0}^{\infty} C_{j}^{*}\left(\varepsilon_{t-j}-\varepsilon_{t-j-1}\right) \tag{7.30}\\
& =\tilde{x}_{0}+C \mu t+C \sum_{i=1}^{t} \varepsilon_{i}+\sum_{j=0}^{\infty} C_{j}^{*} \varepsilon_{t-j} .
\end{align*}
$$

Again we find that x_{t} includes (i) an $\mathrm{I}(1)$ component; (ii) an $\mathrm{I}(0)$ component; and (iii) initial values, denoted by \tilde{x}_{0}.

The I(1) component is of particular interest in the so called common trends model; see King et al. (1991). Specifically, while this component is made up of n linear combinations of the accumulated Wold innovations, only $(n-r)$ of these combinations are linearly independent. In other words, there are fewer trends than variables. From equation (7.30) we find that

$$
\begin{equation*}
C\left(\mu t+\sum_{i=1}^{t} \varepsilon_{i}\right)=\beta_{\perp}\left(\alpha_{\perp}^{\prime} \beta_{\perp}\right)^{-1}\left(\alpha_{\perp}^{\prime} \mu t+\sum_{i=1}^{t} \alpha_{\perp}^{\prime} \varepsilon_{i}\right) . \tag{7.31}
\end{equation*}
$$

Hence, the reduced form linearly independent ($n-r$) common trends are given by ($\alpha_{\perp}^{\prime} \mu t+$ $\left.\sum_{i=1}^{t} \alpha_{\perp}^{\prime} \varepsilon_{i}\right)$, while the coefficients on these trends are $\beta_{\perp}\left(\alpha_{\perp}^{\prime} \beta_{\perp}\right)^{-1}$.

Structural common trends models were first suggested by Blanchard and Quah (1989), King et al. (1991), and Shapiro and Watson (1988). The basic idea is to make identifying assumptions about the long run responses in the endogenous variables with respect to the structural shocks. The observation that the number of linearly independent common trends in the reduced form conditional MA representation is smaller than the number of endogenous variables is a central ingredient. This suggests that structural shocks can be decomposed into (i) shocks with permanent effects on x (trend shocks); and (ii) shocks which only have temporary (transitory) effects on x. Moreover, since the I(0) component and the change in the $\mathrm{I}(1)$ component in (7.30) are correlated, the structural trend shocks

[^7]typically lead to cyclical fluctuations around the trends as well changes in the trends. When x_{t} contains macroeconomic variables, we can think about this as shocks to growth also having an influence on business cycle fluctuations.

The common trends approach is based on identifying B_{0} and Ω using more reduced form parameters than just Σ. In particular, the restrictions implied by cointegration are used for identification through the matrix C.

Example: Consider again the PIH. To exactly identify the parameters of a structural VAR model such that it has a common trends interpretation we need to impose 4 identifying assumptions. By letting Ω be the identity matrix we already have 3 of these restrictions. The remaining restriction will be imposed on B_{0} such that only one of the structural shocks has a long run effect on x.

Collecting the initial values in \tilde{x}_{0} the reduced form common trends representation is

$$
\begin{equation*}
x_{t}=\tilde{x}_{0}+\delta t+C \sum_{i=1}^{t} \varepsilon_{i}+C^{*} \varepsilon_{t} \tag{7.32}
\end{equation*}
$$

Again, let $\eta_{t}=B_{0} \varepsilon_{t}$ be the structural shocks, where $\eta_{t}=\left[\begin{array}{ll}\varphi_{t} & \psi_{t}\end{array}\right]^{\prime}$. The innovation φ_{t} is a trend shock, while ψ_{t} is a transitory shock. The structural form of the common trends representation is:

$$
\begin{equation*}
x_{t}=\tilde{x}_{0}+\delta t+A \sum_{i=1}^{t} \varphi_{t}+\Phi \eta_{t} \tag{7.33}
\end{equation*}
$$

Here, the 2×1 vector A is defined from $C B_{0}^{-1}=\left[\begin{array}{ll}A & 0\end{array}\right]$, and the 2×2 matrix $\Phi=C^{*} B_{0}^{-1}$. Since, $\Omega=I_{2}$, the parameters of B_{0} must also satisfy $B_{0}^{-1}\left(B_{0}^{\prime}\right)^{-1}=\Sigma$.

Question 15: What do our 4 identifying assumptions imply for B_{0} ?

In the PIH case we have for $x_{t}=\left[\begin{array}{ll}C_{t} & Y_{t}\end{array}\right]^{\prime}$ that

$$
\begin{aligned}
C B_{0}^{-1} & =\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22}
\end{array}\right]^{-1} \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
\beta_{11}^{+} & \beta_{12}^{+} \\
\beta_{21}^{+} & \beta_{22}^{+}
\end{array}\right]^{2} \\
= & {\left[\begin{array}{ll}
\beta_{11}^{+} & \beta_{12}^{+} \\
\beta_{11}^{+} & \beta_{12}^{+}
\end{array}\right] . } \\
& -31-
\end{aligned}
$$

For the second column to contain zeros only, the inverse of B_{0} must have that $\beta_{12}^{+}=0$. Since the inverse is lower triangular, it follows that B_{0} itself must be lower triangular, i.e.

$$
B_{0}=\left[\begin{array}{cc}
\beta_{11} & 0 \\
\beta_{21} & \beta_{22}
\end{array}\right]
$$

To uniquely determine the remaining 3 elements of B_{0} we use the relation $\Sigma=B_{0}^{-1}\left(B_{0}^{\prime}\right)^{-1}$. This given us

$$
\begin{aligned}
{\left[\begin{array}{cc}
\sigma_{u}^{2} & \sigma_{u}^{2} \\
\sigma_{u}^{2} & \sigma_{u}^{2}+\sigma_{v}^{2}
\end{array}\right] } & =\left[\begin{array}{cc}
1 / \beta_{11} & 0 \\
-\beta_{21} /\left(\beta_{11} \beta_{22}\right) & 1 / \beta_{22}
\end{array}\right]\left[\begin{array}{cc}
1 / \beta_{11} & -\beta_{21} /\left(\beta_{11} \beta_{22}\right) \\
0 & 1 / \beta_{22}
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 / \beta_{11}^{2} & -\beta_{21} /\left(\beta_{11}^{2} \beta_{22}\right) \\
-\beta_{21} /\left(\beta_{11}^{2} \beta_{22}\right) & 1 / \beta_{22}^{2}+\beta_{21}^{2} /\left(\beta_{11}^{2} \beta_{22}^{2}\right)
\end{array}\right] .
\end{aligned}
$$

Solving these 3 equations for $\beta_{i j}$ we obtain:

$$
\begin{array}{lll}
\beta_{11}=1 / \sigma_{u} & \beta_{21}=-1 / \sigma_{v} & \beta_{22}=1 / \sigma_{v} \tag{7.34}
\end{array}
$$

These parameters are equivalent to the trend innovation, φ_{t}, being a permanent income shock, and the temporary innovation, ψ_{t}, being a transitory income shock. This can be seen from the contemporaneous effects on consumption and income from one standard deviation shocks being

$$
B_{0}^{-1}=\left[\begin{array}{cc}
\sigma_{u} & 0 \\
\sigma_{u} & \sigma_{v}
\end{array}\right]
$$

where the first column contains the effects on x from the trend shock and the second column the effects from the temporary shock. The long run responses are given by

$$
C B_{0}^{-1}=\left[\begin{array}{ll}
\sigma_{u} & 0 \\
\sigma_{u} & 0
\end{array}\right]
$$

The long run is reached after 1 period in this example, and comparing the above results to those in section 2 we find that they are indeed equivalent.

For the n variable case, imposing the necessary n^{2} identifying assumptions is somewhat more involved. First, $n(n+1) / 2$ restrictions are given by assuming that $\Omega=I_{n}$. Second, $(n-r) r$ restrictions are obtained from $C B_{0}^{-1}=\left[\begin{array}{ll}A & 0\end{array}\right]$, where A is an $n \times(n-r)$ matrix. These assumptions imply that the first $(n-r)$ structural shocks have a long run effect on at least one of the x variables, while the remaining r shocks have only temporary effects on x. To identify the $(n-r)$ trend shocks $(n-r)(n-r-1) / 2$ restrictions need to be imposed on A
(which implies the same number of restrictions on B_{0}), while the r transitory shocks can be identified from, e.g., restricting $r(r-1) / 2$ elements of the final r columns of $\Phi_{0}=C_{0}^{*} B_{0}^{-1}$. How to achieve this is discussed in some detail by King et al. (1991), Mellander et al. (1992), and Englund et al. (1994). In addition, the paper by Jacobson et al. (1996) discusses how to relate the structural common trends coefficients of the matrix A to familiar economic theory parameters.

References

Blanchard, O. J., and Quah, D. (1989). "The Dynamic Effects of Aggregate Demand and Supply Disturbances." American Economic Review, 79, 655-673.
Cooley, T. F., and LeRoy, S. F. (1985). "Atheoretical Macroeconometrics: A Critique." Journal of Monetary Economics, 16, 283-308.
Davidson, J. E. H., Hendry, D. F., Srba, F., and Yeo, S. (1978). "Econometric Modelling of the Aggregate Time-series Relationship between Consumers' Expenditure and Income in the United Kingdom." Economic Journal, 88, 661-692.
Englund, P., Vredin, A., and Warne, A. (1994). "Macroeconomic Shocks in and Open Economy: A Common Trends Representation of Swedish Data, 1871-1990." In V. Bergström and A. Vredin (Eds.), Measuring and interpreting business cycles (pp. 125-223). Oxford, England: Clarendon Press.
Frisch, R. (1933). "Propagation Problems and Impulse Problems in Dynamic Economics." In J. Åkerman (Ed.), Economic essays in honour of gustav cassel (pp. 171-205). London, England: George Allen.
Hall, R. E. (1978). "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence." Journal of Political Economy, 86, 971-987.
Hamilton, J. D. (1994). Time Series Analysis. Princeton, N.J.: Princeton University Press.
Jacobson, T., Vredin, A., and Warne, A. (1996). "Common Trends and Hysteresis in Scandinavian Unemployment." European Economic Review.
Johansen, S. (1991). "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models." Econometrica, 59, 1551-1580.
Johansen, S., and Juselius, K. (1990). "Maximum Likelihood Estimation and Inference on Cointegration: With Applications to the Demand for Money." Oxford Bulletin of Economics and Statistics, 52, 169-210.
King, R. G., Plosser, C. I., Stock, J. H., and Watson, M. W. (1991). "Stochastic Trends and Economic Fluctuations." American Economic Review, 81, 819-840.
Lippi, M., and Reichlin, L. (1993). "The Dynamic Effects of Aggregate Demand and Supply Disturbances: Comment." American Economic Review, 83, 644-658.
Lütkepohl, H. (1991). Introduction to Multiple Time Series. Berlin, Germany: Springer-Verlag.
Mellander, E., Vredin, A., and Warne, A. (1992). "Stochastic Trends and Economic Fluctuations in a Small Open Economy." Journal of Applied Econometrics, 7, 369-394.
Runkle, D. E. (1987). "Vector Autoregressions and Reality." Journal of Business and Economic Statistics, 5, 437-454.
Shapiro, M. D., and Watson, M. W. (1988). "Sources of Business Cycle Fluctuations." In S. Fischer (Ed.), Nber macroeconomics annual (pp. 111-148). Cambridge, Ma: MIT Press.
Sims, C. A. (1980). "Macroeconomics and Reality." Econometrica, 48, 1-48.
Slutzky, E. (1937). "The Summation of Random Causes as the Source of Cyclic Processes." Econometrica, 5, 105-146.
Stock, J. H., and Watson, M. W. (1988). "Variable Trends in Economic Time Series." Journal of Economic Perspectives, 2, 147-174.

Anders Warne, Sveriges Riksbank, 10337 Stockholm, Sweden
E-MAIL ADDRESS: anders.warne@riksbank. se
URL: http://www.riksbank.com/
http://www.farfetched.nu/anders/

[^0]: Date: First version: November 1996 (This compilation: January 2000).

[^1]: ${ }^{1}$ A time series is said to be weakly stationary if the first and second moments are invariant (in an absolute sense) with respect to time.

[^2]: ${ }^{2}$ This statement assumes that "actions" have an economic meaning.

[^3]: ${ }^{3}$ By optimal we mean that it has the smallest mean square error among all unbiased predictors.

[^4]: ${ }^{4}$ In the $\operatorname{VAR}(1)$ model, the coindition that the number of unit roots is equal to the rank reduction is equivalent to $\operatorname{rank}\left[\alpha^{\prime} \beta\right]=r$. In the $\mathrm{I}(2)$ example, for instance, we have that $\alpha^{\prime} \beta=0$; for parametric conditions for x_{t} to be $\mathrm{I}(1)$ in the $\operatorname{VAR}(p)$ model, see Johansen (1991).

[^5]: ${ }^{5}$ When $\beta^{\prime} \alpha$ has full rank r (explosive roots have already been ruled out by assumption), it follows that $\sum_{i=0}^{\infty}\left(I_{r}+\beta^{\prime} \alpha\right)^{i}=\left(I_{r}-\left(I_{r}+\beta^{\prime} \alpha\right)\right)^{-1}$, i.e. the matrix $\left(I_{r}+\beta^{\prime} \alpha\right)$ has all eigenvalues inside the unit circle so that the sum of the exponents from zero to s converges to a finite matrix as s becomes very large.

[^6]: ${ }^{6}$ Notice that in the PIH case, $\alpha_{\perp}^{\prime} \beta_{\perp}=1$.

[^7]: ${ }^{7}$ This follows from the fact that ($I_{r}+\beta^{\prime} \alpha$) has all eigenvalues inside the unit circle.

