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ABSTRACT the presentation of a  sample Х м  = (A' i , . . . ,  Xm ) is
m

We give three steps in the direction of shifting usually derived counting the number к = ^  Хг of 
probability from a descriptive tool of unpredictable i= i 
svents to a means for understanding them. At a  l ’s in the observed sample and then setting p =  fc/m. 
very elementary level we state an operational defi- An alternative way for app r e c i a t i n g  it can be found 
nition of probability based solely on symm etry as- by considering that p, referring to the probability 
sumptions about observed data. This definition con- th at the next observed bit Xm+x w ill assume the 
verges, however, on the Komogorov one within a spe- value 1, can be found through analysing the fact 
зіаі la r g e  n u m b e r  law  that represents a  first way of о̂г such Xm+i we would observe exactly к + 1 
twisting features observed in the data with proper- ones within a  m  + 1 sized sample. Assuming that 
ties expected in subsequent observations. W ithin the sequencing of zeroes and ones in the sample is 
this probability meaning we fix a  general s am p l i n g  inessential to the observed phenomenon, we appre- 
m e c h a n i s m  to generate random variables and extend ciate p i  = P [A m+i = 1] as the ratio between the 
aur twisting device to computing probability distri- number of those permutations of the sampled values 
butions on population properties on the basis of the having the last element equal to one and the number 
likelihood of the observed features. Here the ran- permutations. Namely 
iomness core translates from the above symmetry 
assumptions into a generator of un itary uniform ran
dom variables. The function mapping from these el- ^  _  m Kk + 1) _  fc + 1 
îm entary to our more complex variables is exactly (m + 1)! m  + 1 
the object of our inference. Using this framework
we revisit the basic linear regression problem; at the Analogously, we appreciate p0 = P [A m+1 = 0]
same time, however, we are capable of appreciating through 
;onfidence intervals in the case of Gumbel or similar
assumptions about the distribution law of measure- ß o _  ra!(m  — к + 1) _  m  — к  4- 1
ment errors. At the other complexity extreme, we (m + 1)! m  + 1 
also give some in itia l directions for designing efficient
[earning algorithms on neural networks. Aiming to Note that p 0 + pi = that is, the estimated
discover suitable features (which are classically de- probabilities do not sum up to 1: this is due to the
fined as sufficient statistics), we refer directly to the fact that they refer to different probability spaces,
notion of Kolmogorov complexity and coding theo- To put this idea in a more rigorous form, first we
rem in particular. This is to connect the features to introduce an incremental definition for the sample
the inner structure of the observed data  in terms of space:
their concise codes. Thus we are able to shed some _  „ m   ̂ , .. , . , . D efin itio n  1 .1 . l h e  symmetric sample space f o rlight on the current problem ot splitting the learn- v, . .. , .  , a s ta t i s t i ca l  ex p e r ime n t  p r o v i a m q  a s a m p l e  X m  ~
mg task suitably into a  subsymbolic part perfomed , v  v  \ ■ ■ m  ae \ hf* 1 * ч л i l '  \ L 1 • ■ • ? 771 ) Û pa i r  (1 urn « rn ) 1i)tl C7"*6tor instance by a  neural network and a  symbolic one 
done with symbolic models possibly complexer than
but as clearly defined as the mentioned regression * îs t h e  s e t o f  aU t he  аПо'те(і Permutations of
,. & the m-tuplet (Xx, . . . ,  Xm 1 ;
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of the possible ones. Given X m as a  sequence of in- • / * \
dependent bits (i.e. a ll permutations are allowed), 0 3 , /  \
in this framework the above alternative estimation /  \
of probability that the next observed bit will as- 0 2 / \
sume the value 1 has its natu ral environment in the /  \
probability space (Q1m+^,£8rn+i , P ) ,  where П)п+1 is 0 1 / \
the set of a ll the permutations of the ( m  + l)-tup let /  'v
( X i , . . . ,  Xrn, 1), while SSm+\ and P are defined, as ________________________ *
above described, over Г^п+1. 2 3 4 5 s

. . , , , , ... ,, , л , . Figure 1 . Relationship between appreciatedAnalogously, the probability that the next ob- , , , . . . . .  . f  ... „. . .  ... ,, , „ , , , , and estim ated probability in 60 families 01served bit w ill assume the value 0 has to be calcu- , , , . : , . , .
lated in the measurable snare (П0 where (sample, population), each obtained by sam-і а І С Ц  A ll l i l v  1ІІССІО H i d U l v  b  Ud<LC I З b ,-y. : 1 • 1T1 X 1 / 1 W  І І С І  С  « . /• vk « « . . * 4 л

- л , r n .t  j . j. ‘ c  . 1  phng from a  Bernoulli variable where p  risesnow i l "  , ,  is the set of a ll the permutations oi the J  °  ̂ , . .  x , .nw  1 , / -wr  v  n4 from 0 to 1 with step 0.01. W ith reference to(m  + l)-tu p let № ........Xm> 0). Equal.ty l  m  = 20) M  = 5 k + K  = Q Hor._
More in general, the probability that К  of the zontal axis: K, vertical axis: both frequencies

following M  bits will assume the value 1 w ill be es- (bullets) and joined values of р м , к  (line), 
timated through

(7 ) ( к )  \k+kK ) ("l~km^k~K ) prefer this new inferential way of finding the empir-
P(K-,M,k,m) — /m+ m \ ~ (m+M\ W  ical probability are the following:

V k-\-К / v m )

computed in the space (Пт + м , Sêm+м,  P)> wrhere • We don’t need to suppose the existence of an
—т~м is the set of all the permutations of the (m + intrinsical probability, but we can perform our
-V/)-tuplet ( X \ , Xm , Xm+1 = 1 , . . .  Хт+к  ~ inferential method only on the basis of the ob-
1 . Хт+к+і  = 0 . . . ,  Хт+м  = 0). served data;

The links between this inference of the empiri- .  ^  m akes sense also for small size samples; 
cal probability and the Kolmogorov one [17] arise
asym ptotically: • future and past p lay the same role because the

above defined space is made of the global strings
• When m  —> oo, the Kolmogorov sample space of data, 

is the set of all possible values which can be
assumed by the elements of the strings which 2 SECOND STEP 
constitute our sample space.

• When m  —► 00. the two definitions of esti- The typ ical inference framework is met when 
mated and appreciated probability converge to M  —> oc and m  is small. In this case the object of our 
the same value inference is a (possibly infinite) string of data  X  that

we partition in a  prefix which we assume to be known
• When M , K  — ► 00, P(K,M,k,m) = P(k,m,M,K) at the current time (and therefore call sample), and 

tends to the Binomial distribution law an infinite suffix of unknown data which concerns the 
P(k:m,K/M) with the sample size and the future that we call population (see Figure 2). All 
asymptotic l ’s frequency in the population for these data  share the feature of being independent 
parameters. observations of a same phenomenon. Therefore, in

the lim it of the convergence of the probability to the
To appreciate the relationship between the two def- target of large number law, without loss of general-
mitions for small sample and small population (as ity we assume these data as the output of a  same
usual we denote by this term the subsequent M bits) function g# having input from a set of independent
*'e generated a  variety of pairs (sample, population) random variables U uniformly distributed in the uni-
from a Bernoulli variable with p  ranging from 0 to ta ry  interval -  effectively., the most essential source
I under the constraint of both k + К  and m  + M  of randomness2.
as in (1) being constant. In Figure 1 we see that, 77 ; . , ., , . , 1 ,, i Such a qv ahvavs exists by the probability integral
as expectable, probabilities appreciated through (1) transformation theorem [12]. By default capital letters
go around, but do not coincide with those classically wjn denote random variables and small letters their cor-
estimated through frequency. The reasons why we responding realizations.
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Figure 2. Sample and population of random bits. | ( | , л*0' 1 1 • * ■•••■ •••• • *-
m

Figure 3. Generating a  Bernoullian sample.
We will refer to ^  = (U, g$)  as a  s amp l i n g  Horizontal axis: index of the U realizations;

m e c h a n i s m  and to g $ as an exp la in ing  f un c t i o n ,  and vertical axis: both U (lines) and X  (bullets)
this function is precisely the object of our inference. values. The threshold line p  realizes a  map-
Let us consider, for instance, the sample mechanism pjng from j j  t0 %  through (2).
JC  = (U,gp), where

J 1 if и  < p  . . Twisting sample with population properties is
9pvu l -  S Q otherwise our approach to statistical inference, which we call

a l g o r i t hm i c  i n f e r e n c e .  Its general framework is de
explains sample and population distributed accord- picted in Figure 4. For any sampling mechanism, we 
ing to a  Bernoulli law of mean p  like in Figure 2. As have on the one hand the wo r l d  o f  h y p o t h e s e s  about 
shown in Figure 3. for a  given sequence of U's we ob
tain different binary strings depending on the height Sam ple _______ Population
of the threshold line corresponding to p.  Thus it is property n  ----------- ! property П
easy to desume the following implication chain _  ^  _

(Kp  > k) <- (p  < p) <= (K $  > к + 1) (3) w o r ld  o f  U l  ■ ■ ' 1 ■ ■ • w o r ld  o f
o b s e r v a t io n s  ^  h y p o t h e s e s

and the consequent bound on the probability \ /  x\. . .  xmxm+i ■ ■ - \ y  

P [ K F > k \ > P [ p < p \ > P [ K p > k  + 1] (4) P[* is observed] ODI-----------P P  is true]

, . Figure 4. Twisting properties between sample 
which characterizes the cumulative distribution rune- , , .. , . .  , T . . , and population,tion (c.d.f.) Fp of the parameter p. in our statistical
framework indeed, the unknown p  is a  random vari- .

,, l ^ r r that results m special properties of the popula-able in 0,1 representing the asym ptotic frequency of . , . , _  , , , , ,  ,. ,, , , ,■ tion. which we call II; on the other, the world of1 m the populations that are compatible, as a tunc- ■ . .. TT _  , . , . , . , , , actual observations where - as is the same -  the tion of U suffix of the sample, with the number к ot
,, , , , . i  г,- i i ii j  above hypotheses result in corresponding propertiesactually observed 1. Here A ;  denotes the random , , r  ° r  . ,

. . . , r 11 • i. i -r тг on the sample, bo we can use the likelihood otvariable counting the number of 1 s in the sample it , , ■ . . .
i , , , . “ i , . . n .. ■ ! _ . .  the actuaf sample m respect to 7г, a quantity that mthe threshold m the explaining function switches to . . .  , , , , , ,_ . j . .. r TT principle can be easily computed when the hypothe-p  f o r  t he  s a m e  r ea l izat i ons  of U . r  J f  / r

ses are fully specified, to get the probability that the
Note the asym m etry in the implications. It de- corresponding П are satisfied.

rives from the fact that: , , , . ,ih e  theorem below states that, under weak regu
larity  conditions on the data  (see footnote below),

.  raising the threshold parameter in g p cannot de- A e  general form Qf & ^  argument mUst be
crease the number of 1 m the observed sample, grounded Qn sufficient statistics [17]. Let us start
^Ut лк О r o лі-дмгтіп IT С 1 1 fl-i ГЧйПЛіТ €JC 1 ЛП7С •
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/srn(x 1;i?)//sm(x 2; i9) do e s  n o t  d e p e n d  o n  d  w h e n  Here the random variable is exactly p, and the 
x 1 and  x 2 be l on g  t o  a s a m e  e l e m e n t  ofVL(T); confidence refers to the possible suffix of a  given 
T h eo rem  2 .1 . [7] Let  »  = {P*. t f e 0 } i e a  r e gu -  samPle ob™ d on This is highlighted in 
l ar  f ami l y  o f  p r obab i l i t y  m e a s u r e s  on  a r a n d om  v a n -  F iSure 5’ where we considered a string of 20+200 
able X ,  S m = . , X m ) a s amp l e  d r awn  f r o m  ишгагУ umform “ bles representing, respec- 
P , 6 »  wi th  s a m p l e  s pa c e  (D% ) m, and  T  = T (S m) tively ’ the randomness source of a sample and a 
a s ta t i s t i c .  With r e f e r e n c e  t o  a f ixed s amp l i n g  m e c h -  population of Bernoulli variables Then, accord
a n t  (U , g o )  an d  d e n o t i n g  wi th T j \ z )  t h e  s e t  o f  inS to the explaining function (2) we computed 
a e  A su c h  t ha t  T ( f a) = s ( e v e n t u a l l y  f a = a )  a  sequence of Bernoullian 220 bits long vectors

with p  rising from 0 to 1. The pairs к /20 and
h i 200, computing the frequency of ones in the

• t h e  twi s t i nq  a r q u m en t  , , . ., , ,3 a sample and m the population respectively, are
reported along one fret line in the figure. We 

Vm 6 N, Vu = (mi , . . . ,  u m ) 6 [0,1] s u c h  tha t  repeated this experiment 20 times (using differ-
<70(11) = ( g $ ( u i ) , . . . ,  g $ ( u m )) = ( x i , . . .  , x m ) ent vectors of uniform variab les). Then we drew

f o r  a p r o p e r  and  T ( x l t . . , , x m ) -  t on the same graph the solutions of Equations
6 and 7 with respect to p  w'ith varying к  and
5 = 0.1. As we can see, for a given value of к 

{T{g i { u )) > t) (0 < Û) <= ( T ( g s ( u )) > f )  the intercePts of the above curves with a  verti
cal line w’ith abscissa k j 20 determine an inter- 

f o r  a l mo s t  e v e r y  u  (5) vaj  COntaining almost all intercepts of the frets
with the same line. A more intensive experi-

• p r o v i d e d  that, i) f o r  t h e  m e n t i o n e d  u  and  ment would show that, in the approximation of 
c o r r e s p o n d i n g  t, f o r  e a c h  ê  6 €> e i t h e r  /г/200 with the asymptotic frequency of ones in 
T $ l (t) Ç o r T s l {t) С ( D x ) m holds ,  the suffixes of the first 20 sampled values, on all 
i i f T - ^ A t ' )  ф 0, and  i ü )  t < t' < t + 1, f o r  I samples, and even for each sample if we draw
s ui tab l e "(name l y ,  f o r  e a c h  r  6 (0, 1 ), t h e r e  exi s t s  т а п У suffixes of the same one’ almost ^ K 1 “ ^
a s a m p l e  s ize  m Q su c h  that  f o r  e a c h  s a mp l e  u  o f  Percent of the frets fal1 wlthm the analytically
s ize m  > mo I d i v i d ed  by t he  r a n g e  o f  T  wi th $  computed curves.
is u n i f o r m l y  b ound ed  by г ) ,  а jf  sairLpiing mechanism induces a  linear re-

l  ± j. j  i s rp ■ x 4.- £ lation between the x and у  components of the• c an  be s t a t e d  on l y  i j  1 is a j u n c t i o n  o j  a suf f i -  y /
d e n t  s t a t i s t i c  f o r  0  3 observed data, a sample S m can be described asc i e n  s a i s  i c  j o i  - . follows:

In this inferential approach we recover the key g m = {(хі :Уі)\Уг = a + Ь{хг - х )  + е г ! і = 1......m}
notion of 1 — â confidence interval for the param eter 
â . intended as the pair of values (Lt ,L s ) such that:

where x denotes the sample mean, a  and b are 
P [Li < i? < Ls\ > 1 — ô specifications of two random variables, which we

call respectively A and B ,  not depending on the 
In particular: single observation, while e* is the random noise

moving the coordinate pairs far from the regres-
• From (4), to compute confidence intervals for p  sion line. In this case, denoting with ў; the value 

we choose (L i ,L s) such that assumed by the observation when unknown
parameters shift from a  and b to a  and b respec- 

j  \m—i _n ^ tively in the sampling mechanism, we can easily
l  г / ~~ 2 ( ) check thati=fc+1 4 '

m  / \  X / m  m  \

£  7 к ( 1 - ^ Г - ’ = 2 (7) (a < 5 ) 0  £ > < £ > )  (9)
i=k  ̂ * \г=1 г—1 /

---------------------------------- / m m  \
3See [7] for a more complete statement of the claim Л < Л  ^  j у  ( _  _) < у  ~ ( _  \

including both necessary and sufficient conditions, ln the \ ~ / \ * J
?ame paper details can be found on regularity conditions _1 i_1 . .
as well. '
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f and

(3a\ b‘ s.t. (a ' + b1 < k) A 

= (a + b (x — x) < o' + b1 (x — x) Vx > x) )

0 25 / U S| Ë  s  ̂  а^ ег having introduced the random variable

0 . 2 5  0 . 5  0 . 7 5  1 /  ^

x ■_JFigure 5. Generating 0.9 confidence intervals S" — £i 1 + w  ‘----------
for the mean p of a Bernoulli random variable W « - .  тл2

x ' І /with population and sample of n  — 200 and у  "  J
m  = 20 elements, respectively.
F  = k j m  = frequency of ones in the sample; the following relation holds
f  — h j n  = frequency of ones in the popula- for I* = {(a*,b*)}/ =
tion. {argsup {a1 + b1, (a1, b‘) s.t. a1 + b‘ < к} , a ‘ e  I},
Fret lines: trajectories described by the num- where I  is an assigned interval, ruled by 11:
ber of ones in sample and population when p
ranges from 0 to 1, for different sets of in itial P[A + B ( x  - x )  < a* + b*(x - x )
uniform random variables. Curves: trajecto- Væ > -  for som0 ^  ^  g r ]  =
ries described by the confidence interval ex- / \tremes when the observed number к of 1 in / У " У і (хі — x)
the sample ranges from 0 to m .  ™

1 - F S£ 2^Уг + т 1—------------  (12)
i=i У ' (*«—ю 2According to Theorem 2.1, logical relations (9) \ ~ [  )

and (10) represent a tw isting argument if £  У‘ Coupling this with the analogous equation for
m г~1 x < x, we obtain a  confidence interval for the

and ^ 2 у г (хі — x) are weak minimal sufficient whole regression line as in Figure 6. Finally,
l=i considering the further shift of the single ob-

statistics. This happens when for instance e  served point from the regression line, we obtain
is assumed Gaussian. In this case, after intro- the larger butterfly region in the figure repre-
, . ,, , . , . „ , senting the envelope of the confidence intervalsducmg the random variables S e ~ > and - , . _ . .for these pomts. Comparing the two pairs of

m (conventional and our approach) regions in Fig-
S'E = ^ £i{xi — x),  we have ure 6, we note that the algorithmic inner region

i=i is designed to contain the original regression line
in full, while the standard counterpart is the

~\ /ii\ union of separate confidence intervals drawn forF aW  — 1 -  FsP > у і ~  m a \  (11) , ,\ “  j  each x. Ih e  quadratic shape of the outcoming
borders may induce some shadow zones in this
region, such that no line fully contained in the

_ / ™ confidence region passes through them and, in
Fe{b) = 1 — FS'e J 2 ^  Уі Іхі — x) ~ b ^ ( x i  -  x) ‘  I any case, may promote the border crossing by

\*=1 1=1 ' the source line as in the figure.

• Consider the non homogeneously exponential 
Moreover, since random variable T  4 with associated c.d.f.

+ b(x — x) < a + b(x — x), \/x > x ’j  <=> Fx( t )  = 1 — e ^  (13)

( a  < à  A b <V\ ‘'Related to the distribution of survival data in breast
V -  — / cancer treating [9].
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I with respect to the unknown L. Thus focusing
1 0 0 !  m

N on the statistic L = £  log T, and its realization
1=1

I. we can state the following tw isting argument 
for ß 0

( ß 0 <~ß0)  & (b= ' > I)

where L denotes the value assumed by L if 
a° _  

the parameter value shifts from 80 to ß 0. The 
distribution of L is derived through the following 
steps:

1. logT  has the c.d.f.

i  FlogT(t) = 1 -  FG{a<b) (2a -  t)

Figure 6. Algorithmic confidence regions for where a — i +iog3i • & — i+iog s a and ^Ь(а,ь)
the Gaussian driven regression sample denotes the of a  Gumbel distribution
{(Xl, Уі) such that Vi = 5 + 5(1, -  x) + e , , i = w lth  P aram eters a and b.
l . . . . , 2 0 } .  2. The sum of Gumbel distributions is well
with a  = 20 and Xi uniformfy drawn in [0. 20]. approximated by a  Gaussian law. even for
Horizontal axis: x values; vertical axes: y  val- small values of m.
U€S

. Analogously, the tw isting argument (ß\ <Bold line: source regression line. о о
Dark shadow region: 90% algorithmic confi- ß l )  *  (Я 3. 4  h)  13 based 0n the statistic
dence region for regression line.
Light shadow region: 90% algorithmic confi-  ̂ 1 ’ ' ' ' ’
dence region for random points. ^  -------
Dark curve: 90% standard confidence region — l° g ^ )  l°g(~  lo g (l — L,))
for regression line. --------- —----------------------------------------1
Light curve: 90% standard confidence region (logTi — lo gT ) 2
for random points.

where ( U i , . . . , U m ) are the uniform random
where ß ( t )  = ß o ß ^ l o g t , ß\ > e-1 and ß 0 > 0. variables used to describe T  through the sam-
For a sample ( i j , . . .  , i m) drawn from T,  we can pling mechanism and -< is one of the two usual
express ß ( t )  as a  function of order relations < or >5.

m Grouping these results with those in the previ-
log t = — V  log t i  ous sect' oni we can derive a  confidence region

to for ß ( t )  taking note of the following:

through the form distribution of H,  though not analyt
ically known in principle, can be approx- 

ß ( t )  —~ß imated by an empirical cumulative distri-
0 1 ’ bution obtained after a  suitable simulation

— -TÖF7 process.■s-деге 8q = ß 0ß 1 replaces ßo  as one of the
:* o  objects of our inference. The benefit of this 2 ' This em ulation as well as computations on
rporesentation comes from the fact that, accord- need t îe  pr*or knowledge of ß i ,  which
x g  to the inverse transform algorithm [13]. an has been approximated through its maxi-
-Tcplaining function for T  associates to ev- m u m  hk^ o o d  estim ator [17] .
rry seed щ  the solution of 5 Actually we cannot prove the sufficiency of H; how

ever empirical simulations show the essentially monotone
~ô o-(iog t.-iogl) / i i - - ,  \\ _  j. behavior (either increasing or decreasing) of the statistic

a i '> ~ * values when the model parameters increase.
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° ’2| 6. In this section we give a  dual issue of the factor-
!  ization lemma in our statistical framework. It sheds

o . i s l  light on new' methods for finding sufficient statistics
I  or approximations of them. The defintion of suffi-

0  ____ ciency simply says that, when looking at a  useful
I  sample property (a statistic indeed) we must focus on

properties that remain unchanged on samples having 
the same occurrence probability of the observed one.

I-------- If we do not know this probability we can estim ate 
-I------- through a maximum likelihood principle as follows.

Figure 7. 0.9 confidece region for ß ( t )  com- Consider the following lemma putting in relation
puted basing on a sample of size 21 drawn probability with complexity of a string.
from a clinical record, assuming FT as in D efin itio n  3 .1 . [6] Let  Ж be t h e  s e t  o f  al l  b inary
13. Dark area: confidence region; light plot: s t r i n g s  and  |xj t h e  l e n g t h  o f  t h e  s t r i n g  x. D en o t e
shape of ß ( t )  for ML estim ates ßo  = 0.04 and < oo j a c i j  (s d e f i n e d  on  x. A
ß i  -  1.45. par t ia l  r e c u r s i v e  f u n c t i o n  ( p r f )  ф : ЭЕ* —» N is sa id

pre f ix 7 i f  ф(х) < oo and ф(у)  < oo imp l i e s  tha t  x is
n o t  a p r op e r  pre f ix o f  u. Fixed a un i v e r s a l  pre f ix p r f  

3. The inference for the whole ß ( t )  is derived TT 8 .... , D n / r • > > n  i •*., L . , , U , t he  c ond i t i o na l  Pre f ix ( o r  L e v i n s )  Compl exi t y  
focusing on the quantity log/3(<). which Т/,  \ \ t  ■ j  c  j°  n ® '  _ . K[x\y)  o f  x g i v e n  у  is d e f i n e d  as
turns out to be a corresponding function
of the regression line in the usual frame- K(x\y)  = min{|pj s u c h  tha t  U ( p , y )  = a;}, (14)
works, depending on the parameters log /3q p6^
and log ß i . and  t h e  un c on d i t i o na l  Pre f ix Compl ex i t y  К (x) o f  x

as
Figure 7 shows such a derived confidence region.

K ( x )  = K(x\X). (15)
• At a  subsymbolic level, when working with neu

ral networks, with reference to relation (5) we w h e r e  A i s th e  e m p t y  st r ing .
check inequalities on statistics just by changing L em m a 3 .1 . [6] The  probabi l i t y  m e a s u r e  P o f  an y  
the parameters of the network. A main prob- s t r i n g  x e  Ï  exp la ined  by t h e  f u n c t i o n  g ÿ (x) is r e la t ed  
lem is to check whether the error function which to t he  pre f ix c omp l ex i t y  К  o f  x and  g$  t h r ou gh  the 
drives the visit of the param eter space is a suffi- f o l l o w in g  equat i on :
cient statistic  or not. If it is, we can assume this p ^ i ^   ̂- K W 2 K (e*) (16)
statistic as a  reliable indicator of the closeness ~
of the current param etrization of the neural net- The lemma f omes frQm the fact Ä a t _  log(P [2.])
work to the function to be learnt. Otherwise, we С£ш be uged ag a  prefix code of x in a  prefix machin_ 
incur the usual drawbacks such as relative mm- gry having thfi description of g ÿ  in its library) and 
im a of the statistic , overfittmg and so on. This ^  m adlinery can be simuiated by a universal pre
is the reason why Boltzmann machines [1] and fix machinery V by running a  code of length K { g e ). 
statistics consisting of the Kullback relative en- Thufj; a  sequence of length _  iog(p [x] )+K( g^)  can be 
tropy are gerenally preferred to learn probability uged tQ œ de ^ in the reference machinery U of Def- 
distributions. inition 3.1. Of course, in respect to this machinery

the shortest code of’ x has a  length К  (x) no greater 
than the above.

3 T h ir d  s t e p
Though both K ( x )  and K ( g $ )  are not com- 

The tw isting argument leaves us with the crucial putable in general by definition [6], we will use 
problem of finding sufficient statistics. This problem 6This is the case of the distribution law of pairs of
finds a straighforward solution through the factoriza- random instance and solution of a knapsack problem [8].
tion lemma [18] when we work with easv probabilistic Where ** th* set, ^  obtainable con-

, , л  1 , , . V , catenating svmbols from the alphabet x.
models. On the contrary, the same lemma does not 8j e a machinery tapable of computing any com_
enjoy manageable results when the distribution law putable function according to the Church thesis [3]. 
in hands is explained by complex functions, for in- 9This negative result is a vaxiant of the well-know Tur-
stance computing the solution of NF-hard problems ing machine halting l emma  [11].
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the upper bound in Equation 16 as a ML estim ate of 
P[x]. Therefore, our problem of finding a consistent 
statistic approxim ately coincides just with the one 
of reading the upper bound on the probability of a 
sample and identifying the function of the sampled 
data  on which the upper bound depends. Disregard
ing for a moment the term  2K 9̂'e\  we isolate within 
the other upper bound factor the p a rt we assume 
to be independent on the unknown aspects of the 
population (synthetized by the param eter from 
the part depending on them  (the wanted statistics). 
Of course, samples with this same statistic have the 
same probability, apart from coefficients independent 
on hence these statistics result sufficient. There
fore a second approxim ation (an estim ate indeed) 
consists in w riting the second member of (16) in such 
a readable form. As m entioned before, we cannot 
write the minimal codes ф underlying K ( x ); however 
we can look for very efficient programs тг as estimates 
ф of ф th a t we split as follows:

Фх =  7r 5r ( ( 7r / i ( a : i )  5 7̂ h(xrn))i ̂ t(xi ,...xm)) ( ^ )
with g$(x) =  g(x\ $), where the allotm ent of the com
putational tasks is aimed at minimizing the to ta l тг^ 
length. Namely, we recognize in the efficient com
pression of property t of the sample the sufficient 
statistic evoking a general property of the whole pop
ulation, while the rem nant part h of Xi must be com
puted singularly on each variable, g is the p art of the 
envisaged population property th a t we already know. 
It is a cognitive constraint th a t generally makes фх 
longer, but also a  useful help in devising it. We can 
easily recognize in the first term  of the sequence the 
— log of the first factor of the likelihood factorization 
when a sufficient statistic exists:

P0*0 =  / i ( x 'b . . . ,x m)/2 (i(x i,...,.x m) 5̂ ) (18)

Here we further split / 2, thus allowing a balancing 
of description complexities of statistics, constraints, 
and residual unknown parts of a  sample (which looks 
for an enlarged issue of the structural risk minimiza
tion principle introduced in [16]).

Summing up, Equation 16 reads:

P (x) =
m

-  Y ,  K (h (x i) )  -  K { t{x x , x n )) -  K (g )
2  i = i  2 K ^9 ^

(19)

2K (g*) is a sort of rewarding factor allowing us 
to assume great probability in case of complex ex

plaining functions. However neither the true $  nor 
the true complexity value is known; thus the maxi
mum likelihood principle requires us to give a very 
short global description of the sample by minimiz
ing the to ta l length of ж as in Equation 17. In line 
with current thread on hybrid systems [2, 5, 15] we 
may imagine fulfilling this task in a subsymbolic and 
a symbolic step. The former accounts for w hat we 
formally know about the string sampling mechanism. 
The subsymbolic part must supply w hat still remains 
unkown. This a typical job of a neural network for in
stance. In this case a subsidiary inference task arises 
to  estim ate the param eters of this device. Thus an
other (hopefully sufficient) statistic joins the previ
ous one; in other words, we realize th a t the global 
inference problem needs a  pair of sufficient statistics. 
Learning a neural network is a non easy problem sup
ported by an actually poor theory. In the previous 
section we got some insights from the tw isting argu
ment theory, but we can enjoy still poorer intuition 
about the joint estim ation of the pair of statistics. 
R ather, still in the aim of minimizing our sample de
scription, we enunciate the following “don’t cheat” 
principle:

P r in c ip le  1. For suitably describing a function  on 
a training set, a formula beats a neural network only 
if its description length, including observed statistics 
fo r free parameters, is shorter than the neural net
work’s.
E x a m p le  3 .1 . In force of the above principle,

1. The symbolic description of the X O R  func
tion, for instance through the formula  “1 — 
X1X2 -  (1 -  £ i ) ( l  — £ 2 ) ”, beats its descrip
tion through a neural network described by 
a 2-2-1 MLP, namely “a(5 .5 2 (a (—1.49a: 1 +  
1.48x2 -  0.53)) +  5 .5 2 H —1.48zi -  1.49rr2 -  
0.53)) — 3.27” where a denotes a sigmoidal 
activation function, learnt from  the sample 
{ (1 ,1 ,0), (1 ,0 ,1), (0 ,1 ,0 ), (0 ,0 ,0)}  through the 
usual backpropagation algorithm [14]-

2 . In  classifying em,otions in a phonetic database, a 
C4‘5[10] decison tree consisting of 64 IF-THEN- 
ELSE  rules on 74 features is definitely beaten by 
a Support Vector Machine [16] with linear kernel 
on the same variables [4]>

4 C onclusions

We moved from a first model based on a random 
bit generator where the sole knowledge we can ex
trac t is the frequency of ones in the next bits, to  a
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second model where the random source is coupled C onn e c t i o n i s t - S ym bo l i c  P r o c e s s i n g :  F r om Uni-
with a  computing machinery and we observe prop- f i e d  t o  Hybr id Appr oache s .  Lawrence Erlbaum,
erties about the latter, up to the last model where 1998.
the random source disappears in favor of a prefix м  ■» » т • . r - . t r -, . , j  .., ,, r , . , г о M. Li and P. V itanyi. An In t r o du c t i o n  tomachinery coupled with the unteasible job 01 com- ,s , s, . , л ,, ,  ̂ . , . . .  ,. ,, . K o lm o q o r o v  Compl exi t y  and  i ts  Appl i cat i ons .putmg the shortest descriptions. We realize the in- _ . ^  _
v i • i  * i- г.- u u  u Springer, Berlin. 1993.ierence goal is to compute properties which could be °
ascertained in terms of occurrence frequencies in the [7] D. Malchiodi. Algo r i t hmi c  app r oa ch  t o  the
future observations of a phenomenon, and conclude s ta t i s t i ca l  i n f e r e n c e  o f  n o n -B o o l e a n  f u n c t i o n
that these properties have nothing to do with the c la s se s .  Ph.D. dissertation, Université degli
mysterious operation of tossing a coin; rather, they studi di Milano, 2000. 
merely represent a  correct synthesis of what we have
already observed or know about the phenomenon. И  S - M artello and P. Toth. The 0-1 knapsack
This approcah, whose u ltim ate randomness source problem. In Comb ina t o r i a l  Opt imizat ion ,  pages
lies in some uncomputable strings, ф’s in the last 23 (-279. W iley, 1979.
section, allows us to deepen some crucial inference [9] e .  M arubini and M. Valsecchi. Anal y s i ng  Su r -
task at both symbolic (regression curves) and sub- v {va i Data f r o m  Cl ini cal  Trials and  Obse rva-
symbolic (neural networks) levels. Moreover, a fur- t l o n a i Studi e s .  John W iley & Sons, Chichester,
ther release of the minimal structural risk minimiza- UK 19995. 
tion principle sheds some light on the designing of
hybrid subsvmbolic-symbolic learning paradigms. Quinlan. Comparing connectionist and sym

bolic learning methods. In C ompu ta t i o na l  
Lea rn i ng  Th e o r y  and  Natural  Lea rn i n g  S y s t ems .

REFERENCES Volume I. Cons t ra i n t s  and  P r o s p e c t s ,  pages
ril „  . - — yr „. , j  . 445-456. MIT Press, Cambridge, 1994.[1] ii . Aarts and J . Korst. S imula t ed  ann ea l i n g  and

Bo l t zm ann  m a c h i n e s  : a s t o c ha s t i c  a pp r oa ch  to [11] H. Roger. Theo r y  o f  r e c o u r s i v e  f u n c t i o n s  and
c omb i na t o r i a l  o p t im izat i on  and  n eu ra l  c o mpu t -  e f f e c t i v e  c omputab i l i t y .  Me Graw-Hill, 1967.
ing. W iley-Interscience series in discrete math- „  т, , ,, r , , , ■ 7-. , ,.. , . . ,  , . , 12 V. K. Rohatgi. An In t r o du c t i o n  to Probabi l i t yematics and optimization. John Wiley, Chich- _. , ° ±, ..I r i e o r y  and  Ma th ema t i c a l  Stat i s t i c s .  W iley se-Gster 1989.

’ ’ ries .in probability and m athem atical statistics.
[2] B. Apolloni, D. Malchiodi, C. Orovas, and John W iley & Sons, New York, 1976.

G. Palmas. From synapses to rules. In Foun - noi с о о-  i х- с .  x- i ш- j  v j, . , _ t 13] a. Ross. Simula t i on .  S tatistica l Modeling andda t i ons  o t  C o n n e c t i o n i s t - s ymb o l i c  I n t eqr at io n:  ~ . . , n_ _ , , . ,  , Decision Science. Academic press, San Diego,
Rep r e s e n t a t i o n ,  Pa rad i gms ,  and  Al go r i t hms  - , ,. . 1007
Pr o c e e d i n g s  o f  t he  14th European  C on f e r e n c e  on  secon e 1 ion,
Arti f i c ial  I n t e l l i g e n c e , 2000. [14] D. E. Rumelhart, G. E. Hinton, and R. J.

W illiam s. Learning internal representations by
[3] A. Church. In t r o du c t i o n  to Ma th ema t i c a l  Logi c  errQr tion_ In P a r a l l d  D i s t n hu t e d  P r v .

I, volume 13 of Annal s  o f  Ma th e ma t i c s  Stud-  с т д  ш  MIT PresS) Cambridgei Mas.
les. Princeton University Press, Princeton, NJ, sachusstes, 1986.
1944.

[15] R. Sun. In t e g r a t i n g  r u l e s  and  c o n n e c t i o n i s m
[4] W. A. Fellenz, G. J . Taylor, R. Cowie, f Qr roj US£ c o m m o n s e n s e  r e a son i ng .  W iley, New 

E. Douglas-Cowie, F. P iat, S. Kollias, York 1994
C. Orovas, and B. Apolloni. On emotion
recognition of faces and speech using neural [16] V. Vapnik. The Nature  o f  Sta t i s t i c a l  Learn ing
networks, fuzzy logic and the assess system. In Theory .  Springer, New York, 1995.

Amari C. Lee Giles, M. Gon and V. P iun  ^  g w ukg M a t h e m a t i c d  Stat i s t i c s .  W iley Pub-
editors, Pro c e e d i n g  o f  t h e  IEEE-INNS-ENNS v . 0 , . .. T , , , Г] лт v  ,’ s,  lications m Statistics. John Wiley. New York,
In t e r na t i o na l  J o i n t  C o n f e r e n c e  on  Neural  i q«"
Networks - I JCNN 2000, pages 11-93,11-98, Los
Alamitos, 2000. IEEE Computer Society. [18] S. Zacks. The The o r y  o f  St at i s t i c a l  I n f e r e n c e .

W'iley series in probability and m athem atical
[5] M. Hilario. An overview of strategies for neu- statistics. John W iley & Sons, New York, 1971. 

rosymbolic integration. In F. Alexandre, editor,

International Conference on Information Networks, Systems and Technologies

56


