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MATHEMATICAL SIMULATION OF GAS

TRANSPORTATION PIPELINES NETWORKS:

REPETITIVE AND 2D SYSTEM THEORY SETTING

The certain classes of differential nonlinear repetitive processes and discrete 2D control systems for simu-
lation of gas distribution networks are considered. These mathematical models are suitable for handling prob-
lems of optimal control of pressure and flow in gas transport pipeline units and in a pipeline networks. The con-
sidered problem is to optimize the total gas supply subject to some flow-pressure constraints of material bal-
ances and pressure bounds. Some aspects of a comprehensive optimization theory based on a constructive
approach are discussed.

Keywords: networks simulation; gas pipelines; repetitive processes; 2D system; control and optimization
theory.
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ÌÀÒÅÌÀÒÈ×ÅÑÊÎÅ ÌÎÄÅËÈÐÎÂÀÍÈÅ

ÃÀÇÎÒÐÀÍÑÏÎÐÒÍÛÕ ÑÅÒÅÉ:

ÌÅÒÎÄÛ ÒÅÎÐÈÈ ÌÍÎÃÎØÀÃÎÂÛÕ È 2D ÑÈÑÒÅÌ

Â ñòàòüå ïðåäëîæåíû ìåòîäû ìàòåìàòè÷åñêîãî ìîäåëèðîâàíèÿ ðàñïðåäåëåííûõ ãàçîòðàíñ-
ïîðòíûõ ñåòåé íà îñíîâå ìíîãîøàãîâûõ è 2D ñèñòåì óïðàâëåíèÿ. Òàêèå ìîäåëè óäîáíû äëÿ óïðàâëå-
íèÿ äàâëåíèåì è ïîòîêîì ãàçà â òðóáîïðîâîäàõ. Ðàññìàòðèâàåòñÿ çàäà÷à îïòèìèçàöèè ñóììàðíîãî
îáúåìà ïðîêà÷èâàåìîãî ãàçà ïðè îãðàíè÷åíèÿõ íà äàâëåíèå è ïîòîê ãàçà. Îáñóæäàþòñÿ íåêîòîðûå
àñïåêòû ïîñòðîåíèÿ àëãîðèòìîâ îïòèìèçàöèè.

Êëþ÷åâûå ñëîâà: ìàòåìàòè÷åñêîå ìîäåëèðîâàíèå ñåòåé; òðàíñïîðòèðîâêà ãàçà ïî òðóáî-
ïðîâîäàì; ìíîãîøàãîâûå ïðîöåññû; 2D ñèñòåìû óïðàâëåíèÿ.

Introduction

It is well known that gas transportation networks represent complex and large scale dis-
tributed parameter system of great practical interest. Simulation approaches, numerical
methods and optimization of operating modes of gas transport networks have been of per-
manent interest for researchers and a large number of papers were published both in civil
engineering and in the mathematical investigations [1–5]. Nevertheless, optimization and
control of complicated gas networks still remains a challenging problem. The general mathe-
matical models of a gas transportation network typically include a large number of nonline-
ar elements such as pipelines, gasholders, compressor stations and others. In this paper the
mathematical model with optimization problem of gas network units are considered on the
basis of the repetitive and 2D (space and time) system theory setting. Some aspects of cont-
rol theory for multidimensional systems are investigated in [6, 7] and their applications to
gas networks have been considered in [8]. The main elements of constructive optimization
for the repetitive processes have developed in [9, 10]. It is important to investigate problems
of gas transportation for linearization models around predefined trajectories along with re-
al-time capable well-scaled algorithms.

The method of linearization for the models of a gas delivery pipeline networks is develo-
ped in this paper and we obtain the certain classes of linear differential processes and 2D
models. The problem of optimization for total supply cost of a gas transmission with the mi-
nimal guaranteed pressure at the nodes is investigated. On the base of the proposed lineari-
zation of gas pipeline model some new results in optimal control for differential linear repe-
titive processes with constraints are presented. The analysis is based on generalizing the well
known maximum principle. There we have developed a method to establish optimality condi-
tions in the feedback form that is of interest with theoretical point of view and applications.

Gas flow model in networks

In this section the mathematical model and corresponding optimization problem for sin-
gle pipeline unit of the gas network are considered on the basis of the repetitive processes.
The purpose of these modeling is to guarantee a predefined regime for pipeline unit with ma-
ximal output flow. Proposed mathematical model provides a fairly well established mathe-
matical framework and it may be used for the further investigations of complex networks.
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Gas flow model in pipeline unit. The state space parameters are gas pressure p(t, x) and
mass flow Q(t, x) at time t and point x of the pipe, where t T� [ , ]0 and 0  x L. For mathe-
matical description of the state space parameters in the case of the isothermal gas flow in
a long pipeline the following system [1, 2] of nonlinear differential equations of gas dyna-
mics may be used
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where S — the cross sectional area; D — the pipeline diameter; c — the isothermal speed of sound; �—
the friction factor.

It is well known that some important dynamic characteristics of the processes may be re-
ceived from the linearized model. The most accurate linear model may be obtained in some
neighborhood of the known basic regime Q t x( , ), p t x( , ) of the considering process. It is
shown [8], that the linearized model in some neighborhood of the known (pre-assigned, ba-
sic) regime Q t x( , ), p t x( , ) has the following form
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At first, let us consider the problem for the linearized model of a single pipe.
Linear differential repetitive model for pipeline units. The linearization method, as

a first order approximation, reduces the accuracy of the mathematical description of the
real processes in the gas units. In order to reduce this losses some controlled inputs r(t, x)
and q(t, x) may be added to the linear model (2) as follows
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where � �, are some normalizing coefficients. From the physical point of view, control func-
tions r(t, x) may be treated as a correcting pressure generated by compressor station and

gasholders to increase the velocity
� �
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of the running gas volume for the considered gas

unit. The control variable q(t, x) may be interpreted as an additional flow (supply/off take)

to change the velocity
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of the pressure.

Let us approximate the partial derivatives in (3) by the backward differences
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and introduce the following notations:

Q t Q t khk( ) ( , )� , p t p t khk( ) ( , )� , r t r t khk( ) ( , )� , q t q t khk( ) ( , )�

for the values of the unknown functions Q(t, x) and p(t, x) calculated at the points of lattice
{ , , , } { , , }h h mh kh k m2 1� � � . Here m is equal to the integer part of the fraction L / h and L is
the length of the pipe, h is a sampling step. Then system (3) may be rewritten as follows
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If we introduce the vectors z t
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then the dynamical model for the pipeline unit is defined by the linear differential repetitive
state space model of the form

dz t

dt
Az t Dz t Bu tk

k k k
( )

( ) ( ) ( )� � ��1 , k m� 1, , t T� [ , ]0 . (4)

The solution z tk( ), t T� [ , ]0 of system (4) is the output vector, or pass profile vector.
The vector z tk�1( ) produced on the previous pass (k – 1) together with the control functi-
on uk(t) acts as a forcing function on the next pass k. Here we assume that the time duration
period T of the process is finite. In order to complete the description of the process for a sin-
gle pipeline model, it is necessary to specify the boundary and initial conditions, i.e. z t0( ),
t T� [ , ]0 and zk( )0 , k m� 1, on each pass. The boundary condition z t0( ), t T� [ , ]0 can be trea-
ted as a standard pumping regime. The initial conditions zk( )0 ,k m� 1, describe the values of
this standard regime calculated in the starting moment t = 0 at the discrete points of latti-
ce x = kh of the pipe. In order to formulate the optimization problem it is necessary specify
a cost functional. For this purpose, the problem of keeping the pre-assigned regime at the
chosen points of the pipe seems reasonable. In particular, the total gas volume needs to gua-
rantee some technically approved pressure values p T gk k( ) � , k m� 1, at the pre-assigned po-
ints of the pipe may be an appropriate choice. Also we may admit, that there exist several
gas off-takes points which, for simplicity, coincide with some points of the lattice.

Thus, the optimal control problem can be formulated as the problem of finding the ad-
missible controls u tk( ), t T� [ , ]0 such that the corresponding solutions z tk( ), t T� [ , ]0 of the
system (4) with the given initial data keep a pre-assigned regime along the pipe at the final
moment

p T gk k( ) � , k m� 1, (5)

and maximize the total output flow at the final moment T

max ( )
u

J u , J u Q Tk
k

m

( ) ( )�
�
�

1

, (6)

obviously, the introduced control function u tk( ), t T� [ , ]0 not be taken arbitrarily. We assu-
me that controls together with an ability to scale by the corresponding coefficients � �, may
be defined as follows: for each pass number k, k m� 1, the piecewise continuous function uk:
T � �

2 is defined as admissible control for this pass if their components rk(t), qk(t) satisfy
conditions:

r tk( )  1, q tk( )  1, t T� [ , ]0 . (7)

The control problem (4)–(7) gives a motivation for development of an adequate optimiza-
tion method for the special classes of repetitive processes. The time-varying case of the sys-
tem (4) we consider in the second part of this paper.

2D System Setting

The aim of this section is to apply the 2D control theory setting for studying control
problems in gas pipeline units. For the differential system (3) we introduce the following
combined sampling scheme with steps h1, h2 on t, x respectively:
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From system (3) it follows, that the discrete values Q k h k h( , )1 1 2 2 and p k h k h( , )1 1 2 2 of the
functions Q(t, x) and p(t, x) calculated in the nodes of lattice {( , )}k h k h1 1 2 2 satisfy the follo-

wing equations:
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Then the system (8) can be rewritten as follows:

z i j A z i j A z i j A z i j( , ) ( , ) ( , ) ( , )� � � � � �1 1 10 1 2 . (9)

The mathematical model (9) is a discrete version of the gas transport network problem
along the single pipe. Since each gas pipe is long, then it is reasonable to set j Z� � , where
Z� is the set of nonnegative integers. When we apply the method of discrete approximation,
the discrete values j may be huge. Let N is equal to the integer part of the fraction T h/ 1,
where h1 is a sampling step for the variable t.

Then an actual problem is to find the suitable control function u(i), i N� 1, for the gas
pressure and gas flow at the pre-defined time moments for the gas pipeline unit. Thus, we
have the following 2D control optimization problem:

� � � �min ( ), ( ) ( ), ( ) ( , ), ( , )
u j Z

J u J u Ru i u i Gz i j z i j� �
�

�
�
�

�
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�
�
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N

1

, (10)

over the solution of the system (9) with the initial and boundary control condition:

z j j j Z z i i u i i N( , ) ( ), \ { }, ( , ) ( ) ( ), , .0 0 0 1� � � � ���  (11)

Here G ! 0 and R " 0 are given symmetric matrices. The functions u i i N( ), ,� 1 may be
interpreted as the controlled factors: gas pressure and gas flow at the pre-assigned time mo-
ments needed to keep the desired regime how to «pump in pump out» through time. The ini-
tial data z j j j Z( , ) ( ), \ { }0 0� � �� may be treated as an pre-assigned starting pumping regime
given at the initial moment i � 0. Also, note that the quadratic cost functional (10) is based
on the estimation of the deviation from the pre-assigned regimeQ t x( , ), p t x( , ) determined by
the first-step simulation.

Boundary optimal control. An essential problem in optimization theory is to establish
optimality conditions in the feedback form that is of interest in both systems theory and ap-
plications. The aim of this section is to obtain the representation of optimal control functi-
on u i i N( ), ,� 1 for the optimization problem (9)–(11) by means of additional variables w(i, j)
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that present the state variables of the so-called conjugate system. Let # # #A A A0 1 2, , denote the
conjugate matrixes for A A A0 1 2, , respectively. The following result is true.

Theorem 1. The optimal control � �u u u uN
0

1
0

2
0 0� , , ,� of the problem (9)–(11) is given by

formula

u R A w i i Ni
0 1

2
0 0 0 1� � # � �� ( , ), , ,

where w(i, j), j Z� � , i N� �0 1, is described by the following system of equations
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with the boundary conditions z j j z N j j Z( , ) ( ), ( , ) , \ { }0 0 0� � � �� .

Some other results and details of this optimization problem are given in [8]. It is impor-
tant to investigate such problems on conditions of uncertainty, for example, with fuzzy des-
cription of noise and perturbations. The application of concepts and methods of fuzzy set
theory to problems for linear 2D systems is given in [11].

Constrained optimization of time-varying repetitive processes

Here we develop the method to establish optimality conditions in the classic form for
a particular case of differential repetitive processes with nonlinear inputs and nonlocal sta-
te-phase terminal constraints of general form. The problem statement in the proposed form
follows from the mathematical simulation of the distributed gas network given above. In or-
der to extend the proposed model we will consider a general convex case of objective cost
functional and state constrains of general form at the given time moments. Also, we consi-
der the model with matrixes as functions of the temporary variables.

Let [0, T] be a given interval of values of the continuous independent variable t and
K N� { , , , }1 2 � , N $ �% be the set of values of the discrete variable k. Let us introduce the
control and state vectors as u Tk

m( ) � � and y tk
n( ) � � respectively. Then the considered re-

petitive processes are described by
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A t y t D t y t b u t t k K tk

k k k k
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( ) ( ) ( ) ( ) ( ( ), ), , [� � � � ��1 0, ]T , (12)

where the last nonlinear term represents the input signal actually applied to the process.
To complete the description, it is necessary to specify the boundary conditions which are
here taken to be of the form

y k k K y t t t Tk( ) ( ), , ( ) ( ), [ , ]0 00� � � �& ' . (13)

Now we define the class of available and admissible controls. We say that the function u:
K T m( �[ , ]0 � is available for system (12) if it is measurable with respect to t for fixed
k K� and satisfies the constraint u t Uk( ) � for almost all t T� [ , ]0 , where U is a given com-
pact set from �

m . Also the function y: K T n( �[ , ]0 � is a solution of system (12) corre-
sponding to the given available controlu t Uk( ) � if it is absolutely continuous with respect to
t T� [ , ]0 for each fixed k K� and satisfies to system (12) for almost all t T� [ , ]0 and each
k K� . We denote the set of available controls by) and use Mi, Mi

n* � , i � 1 2, , ,� + to de-
note the given compact convex sets. The available control u t Uk( ) � is said to be admissible
for the system (12) if the corresponding solution y t y t uk k( ) ( , , , )� & ' of system (12) and
boundary conditions (13) satisfies to the given constrains y MN i i( )
 � , i � 1 2, , ,� + where
0 1 2$ $ $ $
 
 
+� are specified elements of the time segment [0, T].

The optimal control problem may be stated as: minimize the cost functional

� �min ( ), ( ) ( ), ( ), , ( )
u

N N NJ u J u y y y
�

�
)
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+1 2 � (14)
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for processes described by system (12) and boundary conditions (13) in the class of admissi-
ble controls u �). We also assume that the n n( matrix functions A(t) and D(t) and
the n-vector function '( )t are measurable and integrable on [0, T], the function b:
K U T n( ( �[ , ]0 � is continuous with respect to ( , ) [ , ]u t U T� ( 0 for each fixed k K� and
the function,:� �

n+ � is convex. It is easy to see that these conditions guarantee the exis-
tence and uniqueness of an absolutely continuous solution of system (12), (13) for any avai-
lable contro uk(t). To guarantee the existence of optimal control we assume that the set of ad-
missible controls is non-empty. Examples of such systems (12)–(14) include robotic manipu-
lators that are required to repeat a given task to high precision, chemical batch processes or,
more generally, the class of tracking systems and others. Some results and details concer-
ning the considered processes described by system (12), (13) may be found in [9].

Optimality conditions. To formulate the optimality conditions it is necessary to intro-
duce some functions. Let us consider function  : K T n( �[ , ]0 �

 
 
  
 
  �k k

t

t F t D d k N t( ) ( , ) ( ) ( ) , { , , , }, ( )� # # � ��- 1

0

12 3 � ( )t ,

where the function �( )t is the solution of the linear differential equation

d t

dt
A t t t T

�
�

( )
( ) ( ), [ , ]� � # � 0

with jump conditions � 
 � 
( ) ( )j j jg� � � � 0, j � �1 2 1, , ,� + . Here g g g g n0
1
0

2
0 0� # �( , , , )� +

+
�

is the maximizing vector for the smallest root �0 of the equation

.( )� � 0, .
)

( ) max{ max max }
( )

� /
/ �

� # � # � # 0
� � �g X u

g c g g u
1

. (15)

Here the set X( )� is defined as X Mn( ) { : , ( ) }� / / / �+� � � � , where M =
� ( ( ( *M M M n

1 2 � +
+

� and � is a number from �. The mapping1 ): � �
n+ is the vector

valued function 1 1 1 1u u u u� #( , , , )1 2 � + with component
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N i N i j j
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where the mappings involved are as follows:
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with its power composition ( )( ) ( )( ), [ , ]P f P P f Tk k
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c c c c n� # �( , , , )1 2 � +
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Then n( matrix function F t( , )
 is the solution of the differential equation:
� 

�



 

F t

A F t
( , )

( ) ( , ),�

F t t En( , ) � , where En denotes the n n( identity matrix.

The optimality conditions for (12)–(14) are given by the following theorem.
Theorem 2. If the number �0 is the smallest root of the equation (15), then there exists an

optimal control u tk
0( ), k K� , t T� [ , ]0 for the problem (12)–(14) such that J u( )0 0� � and for al-

most all t T� [ , ]0 the minimality principle (minimality conditions)

# � #� � � �
�

� �  2
2

k N k N k
U

k N kt b u t t t b t( ) ( ( ), ) min ( ) ( , )1 1
0

1

for all k K� are fulfilled.
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It should be noted, that the most of real complex and large scale distributed gas ne-
tworks may be described by time-varying repetitive models with quasidifferentiable coeffi-
cients [12].

Conclusion

This paper presents some results on mathematical description of the distributed gas ne-
tworks in framework of multistage simulation. For this purpose mathematical analysis of
distributed gas networks in the framework of a repetitive processes and 2D system theory is
given. At first, we present the mathematical model of network pipe units based on the stati-
onary repetitive differential linear systems. That gives us a good tool to express potentially
critical flow/pressure values within the certain margins in order to optimize the demand
distributed over single pipe units. Optimal control problem for stationary differential linear
repetitive processes has investigated on the base of supporting control functions ap-
proach [9]. The main contribution here is the development of constructive necessary and
sufficient optimality conditions that may be used for create numerical algorithms. Farther,
we use the linear-quadratic optimization approach for 2D control system. The method to es-
tablish optimality conditions in the feedback form have developed. Further research should
aim to extend the presented models to complicated gas networks, which are more relevant
for applications.
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APPROACHES TO ASSESSMENT OF COMPETITIVENESS

OF NETWORK TRADING BUSINESS

The article considers approaches to determining the essential characteristics of the network business
competitiveness, methods of its assessment, a system of indicators and analysis criteria, which will allow
a more balanced approach to the development of strategies and tactics of competition and ensure long-term
retention of competitive advantages.
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ÁÃÝÓ (Ìèíñê)

ÏÎÄÕÎÄÛ Ê ÎÖÅÍÊÅ ÊÎÍÊÓÐÅÍÒÎÑÏÎÑÎÁÍÎÑÒÈ

ÑÅÒÅÂÎÃÎ ÒÎÐÃÎÂÎÃÎ ÁÈÇÍÅÑÀ

Â ñòàòüå ðàññìàòðèâàþòñÿ ïîäõîäû ê îïðåäåëåíèþ ñóùíîñòíûõ õàðàêòåðèñòèê êîíêóðåíòî-
ñïîñîáíîñòè ñåòåâîãî áèçíåñà, ìåòîäîâ åå îöåíêè, ñèñòåìû ïîêàçàòåëåé è êðèòåðèåâ àíàëèçà,
÷òî ïîçâîëèò áîëåå âçâåøåííî ïîäîéòè ê ðàçðàáîòêå ñòðàòåãèè è òàêòèêè êîíêóðåíòíîé áîðüáû,
îáåñïå÷èòü äëèòåëüíîå óäåðæàíèå êîíêóðåíòíûõ ïðåèìóùåñòâ.

Êëþ÷åâûå ñëîâà: êîíêóðåíòîñïîñîáíîñòü; êîíêóðåíòíûå ïðåèìóùåñòâà; ñåòåâîé òîðãîâûé
áèçíåñ; îöåíêà; ïîäõîäû; êðèòåðèè; ïîêàçàòåëè.

Ââåäåíèå. Ðàçâèòèå ýêîíîìèêè â Ðåñïóáëèêå Áåëàðóñü ñîïðîâîæäàåòñÿ áûñòðûì
âíåäðåíèåì èíôîðìàöèîííûõ òåõíîëîãèé, âèðòóàëüíûõ ñðåä, ýëåêòðîííûõ ïðî-
ñòðàíñòâ, öèôðîâûõ ïëàòôîðì, ïîçâîëÿþùèõ âîñïðîèçâîäèòü è íàðàùèâàòü ñòîèìîñòü
â ëþáîì òåððèòîðèàëüíîì, âðåìåííîì è ïðîñòðàíñòâåííîì ñåãìåíòå. Âêëþ÷åíèå ýòèõ
ñîñòàâëÿþùèõ â öåïî÷êè ïðîèçâîäñòâà ñòîèìîñòè (â òîì ÷èñëå è äîáàâëåííîé) àêòèâíî
âîâëåêàåò è ïîòðåáèòåëÿ â ñèñòåìó ïðîèçâîäñòâà ñòîèìîñòè, ìàñøòàáèðóåò ñâÿçè, ôîð-
ìèðóåò èõ èåðàðõèþ è âûäàåò èõ â âèäå ðàçëè÷íûõ ñåòåé, â òîé èëè èíîé ìåðå ñâÿçàí-
íûõ ìåæäó ñîáîé ñ ðàçëè÷íîé ñòåïåíüþ òåñíîòû, âðåìåíè âçàèìîâûãîäíîãî ôóíêöèîíè-
ðîâàíèÿ. Â ýòîé ñèòóàöèè àêòèâíûå äåéñòâèÿ ïî ïîèñêó ïðîèçâîäèòåëåé, ïîòðåáèòåëåé,
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